
Bayesian Statistics, Assignment for Tuesday, Nov. 19

Reading
I am having a rough time figuring out how to make Chapter 13 more digestible. So I don’t want you to 
start reading Chapter 13 yet. The problem is that Donovan and Mickey start into the rather advanced 
subject of Monte Carlo methods applied to Bayesian statistics without developing the ideas of Monte 
Carlo methods first. These ideas pre-date their application to Bayesian statistics by about 40 years. In 
fact, they were developed in the 1940s to deal with whether a chunk of enriched uranium would be a 
critical mass (e.g., whether or not it would support a runaway chain reaction).

The term Monte Carlo is a reference to gambling. You could call these “Las Vegas methods.” The idea 
is that you have modeled a system and that you want to look at a representative set of states in that 
model. For each state you are going to tabulate something. If the states are representative, it isn’t a 
big leap to hope that the tabulation is representative. The giant question that Monte Carlo methods 
solved is how you obtain a representative set of states for a complex system.

For the case of the atomic bomb, you want a representative set of paths that the neutrons released in 
each step of chain reaction follow. You can’t possible follow all the paths of all the neutrons, and even 
for a few dozen neutrons you can’t exhaustively examine all the different things each of those neu-
trons could do. So you are looking for a representative set of paths that the few dozen neutrons could 
follow and the reactions they could cause.

In preparation for learning about Monte Carlo methods as applied to Bayesian statistics, I’d like us all 
to luxuriate in an article about their invention. It is by the first author on the paper that revealed the 
Monte Carlo method to the world: “Equation of State Calculations by Fast Computing Machines,” 
Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward 
Teller, published in the Journal of Chemical Physics, June, 1953. The article, by Nicholas Metropolis 
called “The Beginning of the Monte Carlo Method”  is here, https://sgp.fas.org/othergov/doe/lanl/pub-
s/00326866.pdf, and in your file folders.

Meanwhile I have a problem set for you that I hope will help solidify your understanding of Chapter 11.

For Problem Set 14 — The Mug Breakage Problem — With 
a Gamma Function Prior

I was looking ahead to Chapter 11 when I wrote Problem 4 on Exam 2. You might remember that it was 
called “The Mug Breakage Problem — But with an Exponential Prior.” Why was the exponential prior 
problem preparation for gamma distribution priors!? Well, here is the gamma distribution prior:

P(a) = βα

Γ(α)
aα-1 e-βa

For the exam, I chose α = 1, and β = 2. Plugging that in, you get

P(a) = 21

Γ(1)
a1-1 e-2a = 2

Γ(1)
a0 e-2a = 2

Γ(1)
e-2a

and it happens that Γ(1) = 1 so this simplifies to

P(a) = 2 e-2a

which is exactly what I gave as the exponential prior on the exam problem.
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1. Tabulating the Gamma Function

Now here is something confusing: this whole thing that we are looking at,

P(a) = βα

Γ(α)
aα-1 e-βa,

I have been calling  “the gamma function.”  It happens that the thing in the denominator that is 
needed to normalize this gamma function is also called “the gamma function.” What a pain. To disam-
biguate this annoying terminology collision I will try to be better and do what statisticians do which is 
to call the whole thing “the gamma distribution” and the denominator “the gamma function.”

Here is a graph of the gamma function:

In [ ] := Plot[Gamma[x], {x, 0, 4.5}, PlotRange → {{0.0, 4.5}, {0, 10}}, GridLines → {Range[0, 4, 0.5], Range[0, 10, 1]},
GridLinesStyle → Directive[Black], Ticks → {Range[0.0, 4.5, 0.5], Range[0, 10, 1]}]
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(a) Examining the graph on the previous page, please write down, what is

Γ(1) =

Γ(2) =

Γ(3) =

Γ(4) =

(b) If I told you that 

Γ(5) = 24

Γ(6) = 120

Γ(7) = 720

could you make a guess as to what Γ(n + 1) is?

Γ(n + 1) =

For the formula you just guessed/discovered and checked against the above 7 cases, you can see why 
the gamma function is thought of as a generalization of the factorial function. The factorial function is 
only defined for integer values of n. Γ(n) has a value for all values of n, except at 0 and at any negative 
integer, where it blows up.

2     AssignmentFor2024-11-22.nb



(a) Examining the graph on the previous page, please write down, what is

Γ(1) =

Γ(2) =

Γ(3) =

Γ(4) =

(b) If I told you that 

Γ(5) = 24

Γ(6) = 120

Γ(7) = 720

could you make a guess as to what Γ(n + 1) is?

Γ(n + 1) =

For the formula you just guessed/discovered and checked against the above 7 cases, you can see why 
the gamma function is thought of as a generalization of the factorial function. The factorial function is 
only defined for integer values of n. Γ(n) has a value for all values of n, except at 0 and at any negative 
integer, where it blows up.

2. Exploring the Gamma Distribution

(a) Coming back to the gamma distribution

P(a) = βα

Γ(α)
aα-1 e-βa

Simplify this for the special case α=2 and β = 3. Use what you found for Γ(2) in Problem 1 to finish the 
simplification.

P(a) =
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I will have Mathematica plot the function you found:

In [ ] := gamma[a_, α_, β_] :=
βα

Gamma[α]
aα-1 Exp[-βa];

Plot[gamma[a, 2, 3], {a, 0, 4}]
Out[ ]=
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(b) The junk out front of the function you found is just there to normalize the function to have total 
area 1 and it might be plausible that the function above indeed has area 1.If I had asked you to sim-
plify the exact same function, except without the junk out front, you’d be simplifying  Q(a) = aα-1 e-βa. 
Please simplify that for the same special case, α=2 and β = 3:

 Q(a) =

(c) What is the area under the curve of Q(a)? (HINT: You know this because you know what junk was 
left off of the front).

(d) A bit of jargon is that since these are the same function of a, but with different factors out front 
(which do not involve a), we say these functions are proportional, and we write

Q(a) ∝ P(a).

The little fish that means proportionality looks an awful lot like an α, so be careful when reading and 
writing it. Here is a question for you:

Is Q (a)
∫0
∞Q(b) db

 proportional to Q(a)?

(e) What is the area under the curve of the function Q (a)
∫0
∞Q(b) db

?

I hope this odd chain of questions helps you think a little more clearly about normalization factors and 
proportionality.
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3. Some Likelihoods

The formula you need for likelihood in the case of Poisson distributions was on p. 59 of 
Young:

We observe the kitchen for two weeks and see 4 mugs broken in one week and then 1 mug broken in 
the next.

(a) Write down the likelihood of having n = 4 mugs broken in the first week.

(b) Repeat, but with n = 1 mug for the second week.

(c) Take the product of what you got in (a) and (b).

P(data a) =

4. The Posterior

In 2(a) you wrote down the prior, P(a). In 3(c) you wrote down the posterior, P(data a).

By Bayes theorem, you know that the posterior is proportional to  P(data a)P(a). The proportionality 
constant is something I often call “denominator” and it is

∫0
∞P(data b)P(b) db

What Bayes theorem says is

P(a data) = P(data a)P(a)
∫0
∞P(data b)P(b) db

(a) Just ignore the denominator for a minute. It doesn’t depend on a, so it only changes the overall 
vertical scale of the function. Pretend for just a minute that it isn’t there, and if it weren’t then sim-
plify:

Ppretend version(a data) = P(data a)P(a) =

Here’s another thing you can do. Just get rid of the 9  in the formula you just wrote by scratching it 
out, since we are throwing away proportionality factors.

(b) What gamma distribution is this proportional to? Once you have figured that out. Write down the 
whole gamma distribution:

αposterior =

βposterior =

Pcomplete version(a data) =

(c) Remember how Jacob described it as “greedy” to use the formulas like 11.20 and 11.22 on p. 165 of 
Donovan and Mickey? Well, you have those formulas for the gamma distribution. Donovan and Mickey 
use n to mean the number of weeks of data, and they use ∑i=1

n xi to refer to the total number of mugs 
broken in those weeks. Can you double check that with n = 2 and the total number of mugs broken = 5 
that the αposterior and βposterior computed with their formulas agrees with what you got above? Greedy 

method:

αposterior =

βposterior =

(d) Hopefully the cross-check in (c) worked out. Finally, if you haven’t already, can you use what you 
learned about Γ(α) in Problem 1 to finish simplifying the real posterior with all the necessary normaliza-
tion constants:

P(a data) =

I hope by doing this specific example, you now see where the greedy formulas come from.
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