
Bayesian Conjugates
This document is a lightning summary of Donovan and Mickey Chapters 10, 11, and 12, 
which offer an introduction to three types of Bayesian conjugates. Perhaps we can see the 
forest for the trees more clearly working through these three chapters in one fell swoop.

As you may have started to realize, parametrizing priors, likelihoods, and posteriors, and computing 
products of functions and their integrals is the bane of getting quickly to conclusions with Bayesian 
statistics.

Furthermore, once you have a posterior, you may get some more data, and the posterior after the first 
round of data collection becomes the prior going into the second round of data collection, and so you 
have yet more products of functions and integrals to compute. This seems never ending!

Wouldn’t life be great if the posterior and the prior had the same functional form? If that were so, the 
posterior after a round of data collection which becomes the prior for the next round — if it is of the 
same form — wouldn’t introduce a slew of new products and integrals to compute. Well, life is great. 
There are pairings of priors and likelihoods for which this is true, and these pairings are called 
“Bayesian conjugates.”

Chapter 10 — Beta Function Priors are 
Conjugate to Binomial Likelihoods
Our canonical example will be field goal attempts.

Beta Function Priors
In my introduction to Chapter 10, I wrote down the beta function prior in the following 
form:

P(p) = 1
B(α,β)

pα-1(1 - p)β-1

The parameter p is the probability of a successful field goal attempt (and it might be something small 
like 0.1 for field goals being attempted from 80 yards). 1 /B(α, β) is a normalization factor that you 
would have something like Mathematica compute for you. We think of it as a constant because in this 
context we are thinking of p as the variable, and p doesn’t show up in B(α, β). It is there so that the 
area under the curve of P(p) is 1. In Donovan and Mickey’s jargon, α and β are called “hyperparame-
ters.” This is so you won’t get confused between them and the parameter p which shows up in the 
binomial distribution. All three of these are parameters, and I will not often be saying “hyperparame-
ters” because parameters appear in many contexts and we don’t need to have a different name for 
each context. 

Two facts about the beta function prior: (1) It has mean μ = α
α+β

, and (2) it has variance σ2 = αβ
(α+β)2 (α+β+1)

. 

These facts can be important when you are picking a prior.
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Binomial Likelihoods
Binomial likelihoods are old hat for you now, but it is handy to reproduce the formula. The likelihood 

of having n successes (field goals made) in N trials (field goals attempted) is P(n p) =
N
n

pN-n(1 - p)n.

Chapter 11 — Gamma Function Priors are 
Conjugate to Poisson Likelihoods
Our canonical example will be mug breakage rates.

Gamma Function Priors
In Chapter 11,  Donovan and Mickey wrote down the beta function prior in the following 
form:

P(a) = βα

Γ(α)
aα-1 e-βa

The parameter a is the mug breakage rate. βα /Γ(α) is also a normalization factor that you would have 
something like Mathematica compute for you. We think of this factor as a constant because it doesn’t 
depend on a. The hyperparameters in the gamma function have absolutely nothing to do with the 
hyperparameters in the beta function. 

Two useful facts about the gamma function prior: (1) It has mean μ = α
β

, and (2) it has variance σ2 = α
β2 .

Poisson Likelihoods
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Poisson Likelihoods
Poisson likelihoods are old hat for you now, but it is handy to reproduce the formula. The likelihood of 

having n events (mug breakages) is P(n a) = an

n!
e-a.

Chapter 12 — Gaussian Function Priors are 
Conjugate to Gaussian Likelihoods
Our canonical example will be bacteria survival time.

Gaussian Function Priors
In Chapter 12,  Donovan and Mickey wrote down the gaussian function prior, but I am going to write it 
down with something more like Young’s variable names:

P(m) = 1
2 π σm

e-(m-μ)22 σm
2

Something I don’t want to deal with and that we really should deal with if we want to be completely 
honest is that σm is probably not going to be given. However, I am going to treat it as a given for the 
foreseeable future.

Of course, this Gaussian function prior (1) has mean μ, and (2) variance σm
2.

Gaussian Likelihoods
Gaussian likelihoods are old hat. The likelihood of getting the data point x (a bacterium survival time) 
is 

P(x m) = 1
2 π σx

e-(x-m)22 σx
2
.

Notice that I have allowed for the possibility that the variance, σx
2, in bacterium survival times has 

some different value than the variance, σm
2, in the prior. There is no reason for these variances to be 

the same.

The Posteriors

BayesianConjugates.nb     3



The Posteriors
Having summarized all these formula in one handy-dandy place, we now have the fun of computing 
the posteriors:

P(p n) = P(n p) P(p)

∫0
1P(n p) P(p) dp

P(a n) = P(n a) P(a)
∫0
∞P(n a) P(a) da

P(m x) = P(x m) P(m)

∫-∞
∞ P(x m) P(m) dm

We’ll do that algebra together in class. All we really need to focus on to understand why Bayesian 
conjugates are so great is the numerators. What happens in the integrals in the denominators is much 
less interesting (why!?), and we will usually just stuff those into Mathematica.
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