
Monte Carlo Methods Case Study
We got pretty far into Monte Carlo theory in the three “Why Do They Work?” write-ups:

* https://brianhill.github.io/bayesian-statistics/resources/MonteCarloMethodsWhyDoTheyWork-I.nb.pdf
* https://brianhill.github.io/bayesian-statistics/resources/MonteCarloMethodsWhyDoTheyWork-II.nb.pdf
* https://brianhill.github.io/bayesian-statistics/resources/MonteCarloMethodsWhyDoTheyWork-III.nb.pdf

We also got pretty far when we were studying Bayesian conjugates. Now we are going to put all of 
these ideas together in a case study. The case study is the Hepatitis B vaccination study described in 
Chapter 2 of Markov Chain Monte Carlo in Practice, by Gilks, Richardson, and Spiegelhalter. Gilks, 
Richardson, and Spiegelhalter are the editors. Chapter 2’s authors are Spiegelhalter, Best, Gilks, and 
Inskip.

The Likelihoods and the Priors
On pp. 27 and 28 of Chapter 2, Spiegelhalter, Best, Gilks, and Inskip describe the likelihoods and the 
priors for analyzing the Hepatitis B data. Before I show you any math, I want to show you a diagram 
from p. 26 of that chapter. (I am going to show you the same diagram again after doing the math.)

You can find diagrams like these in Chapter 19 of Donovan and Mickey. You don’t need to go look 
there. I am hoping this case study makes it clear how the diagrams work.

Let’s look at just a few things in the diagram for starters. At the bottom of the digram is a number σ. 
That is the standard deviation of the errors in the blood samples, yi, j. The cool thing about this analy-

sis is that σ is not going to be given. It is going to be distributed according to a prior.

As a second thing in the diagram is the αi and the βi. Those are the intercept and slope of the linear fits 
to the titers, which is a fancy name for a blood test that measures antibodies to Hepatitis B. They 
aren’t going to be a best fit using the frequentist methods we studied months ago. They are controlled 
by the parameters above them, which are in turn controlled by priors.

Let’s dive in to the actual math, and then the diagram above and the words that go along with it are 
likely to be more meaningful.
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The Likelihoods for the yi, j

On p. 27 the likelihoods for the yi, j, the αi, and the βi are given by these four equa-

tions:

Let’s focus on the yi, j’s. The first two equations say that the likelihood for the yi, j’s is:

Py =
1

 2 π σ
∑jn j

e-∑i, jyi, j-αi-βi vi, j
22 σ2

     where     vi, j ≡ log ti, j

730

The babies are indexed by i, where i = 1, ..., n, and n = 106. The blood samples for a given baby are 
indexed by j where j = 1, ..., n j. Also,∑i, j is a compact way of writing ∑i∑j which is a “double sum.”

If it wasn’t at all obvious that that was what the first two equations say, that is because the authors 

are using a compact notation used by statisticians which we have not introduced in our class. The ~ 
means “statistically distributed according to,” and the Nμ, σ2 means “a Gaussian with mean μ and 

variance σ2.” If it helps you remember what the equations mean, I’ll mention that statisticians use N 
because they usually refer to Gaussian distributions as “normal distributions.”

Putting all the verbiage together, the first two equations say, “the yi, j are statistically distributed nor-

mally around the μi, j with variance σ2 and the μi, j are  linear functions of log of the ti, j.”

I did one other thing to make my equation prettier, which was to define the vi, j so logarithms and the 

number of days in two years (365·2=730) don’t cause clutter. It makes it more obvious that it is just a 
linear fit with a bit of preprocessing of the times.
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If There Were Only One Baby in the Study

If the number of indices is obscuring my equation, let’s drop from 106 babies to only 1 baby. Then we 
wouldn’t need the index i or the sum on i. We’d just have:

Py =
1

 2 π σ
n j

e-∑jy j-α1-β1 v j
22 σ2

     where     v j ≡ log t j

730

Is it perhaps more obvious that this is a likelihood if I mention that  this is exactly the same function 
we maximized (by minimizing  ∑j y j - α1 - β1 v j

2) when we did the frequentist derivation of linear 

regression all the way back on Sept. 27? Anyway, we actually have 106 babies, and so we have to 
reintroduce i, and the ∑i in the exponential just means the total likelihood is the product of the likeli-
hoods for all the babies.

The Likelihoods for the αi and the βi

The third equation from p. 27 says the likelihood for the αi’s are:

Pα =
1

 2 π σα
i e-∑i(αi-α0)22 σα

2

The fourth equation says the likelihood for the βi’s are:

Pβ =
1

 2 π σβ
i e-∑i(βi-β0)22 σβ

2

The Priors

You will notice that five new parameters have appeared in these equations: σ2, α0, σα
2, β0 and σβ

2. 

These are called “parent parameters.” We aren’t going to just assume values for the parent parame-
ters. We need priors for them. On p. 28 of Chapter 2, the priors are given in these two equations:

Now 10,000 is just some really big number. In fact, it is the square of 100. Let me define w = 100. Then 
the first equation  from p. 28 says that the priors for α0 and β0 are normally distributed as follows:

Pα0 =
1

2 π w
e-α0

22 w2

Pβ0 =
1

2 π w
e-β0

22 w2

The Ga in the second equation refers to the Gamma distribution. The inverses, σ-2, σα
-2, and σβ

-2  in the 

second equation are telling us that we should define some new variables

τ = 1
σ2 , τα =

1
σα

2 , and τβ =
1
σβ

2

and then the priors for τ, τα, and τβ are Gamma distributed. Let me define u = 0.01. Then we would 
write this gamma distributions as:

Pτ =
uu

Γ(u)
τu-1 e-u τ

Pτα =
uv

Γ(u)
ταu-1 e-u τα

Pτβ =
uu

Γ(u)
τβu-1 e-u τβ

So we have a total of five priors, one for each parameter, and the complete prior is the product of all 
five priors.

The reason they used w = 100 and u = 0.01 is that they were trying for very uninformative priors. I used 
w because in my mind it stood for “wide.”

You might remember that the way you make a beta distribution extra uninformative is to make it very 
U-shaped by choosing α and β to be small. That was in Donovan and Mickey Chapter 10. In Chapter 11 

on p. 159, they defined g(x; α, β) = βα

Γ(α)
xα-1 e-β x.

All that is going on in an equation like Pτ =
uu

Γ(u)
τu-1 e-u τ is that α = β = u = 0.01 and u is so small to 

make the gamma distribution uninformative.
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In fact, before we leave these priors, let me show you just how uninformative they are trying to be:

In [ ] := Plot
1

2 Pi w
Exp-αo2  2 w2 /. w → 100,

{αo, -100, 100}, PlotRange → {{-100, 100}, {0, 0.005}}

Out[ ]=

-100 -50 0 50 100

0.001

0.002

0.003

0.004

0.005

In [ ] := Plot
uu

Gamma[u]
tu-1 Exp[-u * t] /. u → 0.01,

{t, 0, 100}, PlotRange → {{0, 100}, {0, 0.005}}

Out[ ]=

0 20 40 60 80 100
0.000

0.001

0.002

0.003
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The Posterior
Well the posterior is the high-dimensional function going to try to sample using Gibbs sampling. It is 
the product of the three likelihood equations and the five prior equations 
above:

P(τ, α0, τα, β0, τβ, {αi}, {βi}) = Py Pα Pβ ·Pα0 Pβ0 Pτ Pτα Pτβ denominator =
1

 2 π/τ 
∑jn j

e-τ ∑i, jyi, j-αi-βi vi, j
22 · 1

 2 π/τα 
n e-τα ∑i(αi-α0)22 · 1

 2 πτβ 
n e-τβ ∑i(βi-β0)22 ·

1
2 π w

e-α0
22 w2

· 1
2 π w

e-β0
22 w2

· uu

Γ(u)
τu-1 e-u τ · uu

Γ(u)
ταu-1 e-u τα · uu

Γ(u)
τβu-1 e-u τβ

÷ denominator (the most horrible denominator with 217 integrals)

This is our posterior function of 217 parameters. I can’t even look at this function in the above form 
and see what it means. Let’s rewrite it by stripping out every last one of the constant factors:

P(τ, α0, τα, β0, τβ, {αi}, {βi}) ∝ τu-1+∑jn j2 e-τ ∑i, jyi, j-αi-βi vi, j
22 e-u τ ·

ταu-1+n/2 e-τα ∑i(αi-α0)22 e-u τα ·

τβu-1+n/2 e-τβ ∑i(βi-β0)22 e-u τβ

e-α0
22 w2

e-β0
22 w2

Notice that in ignoring the constants, I definitely am not allowed to get rid of all the powers of τ, τα, 
and τβ. Those are not constants.

Possibly it helps to remember how factorials factor. Rewrite:

e-τ ∑i, jyi, j-αi-βi vi, j
22 =∏i e-τ ∑jyi, j-αi-βi vi, j

22

And rewrite:

e-τα ∑i(αi-α0)22 =∏i e-τα(αi-α0)22

And rewrite:

e-τβ ∑i(βi-β0)22 =∏i e-τβ(βi-β0)22
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Then,

P(τ, α0, τα, β0, τβ, {αi}, {βi}) ∝ τu-1+∑jn j2 ∏i e-τ ∑jyi, j-αi-βi vi, j
22 e-u τ ·

ταu-1+n/2 ∏i e-τα(αi-α0)22 e-u τα ·

τβu-1+n/2 ∏i e-τβ(βi-β0)22 e-u τβ ·

e-α0
22 w2

e-β0
22 w2

The Power of Factorization for the αi Axis

We have the factorization we said we were going to get in the last of three “Why Do They Work?” write-
ups. The factorization means that whenever we move in one of the 217 directions, only a very few of 
the factors above change. As an example, let’s imagine that αi is changing (for just one of the i ' s) and 
that every other parameter stays constant. Then P(t, α0, tα, β0, tβ, {αi}, {βi}) can be thought of 
as:

P(αi) ∝ e-τ ∑jyi, j-αi-βi vi, j
22 ·e-τα(αi-α0)22

What is the coefficient of αi
2 in the exponential? It is -(τ + ni τα) /2 where ni is the number of titers for 

baby i. So the variance is

1
τ+ni τα

By completing the square, you can find the mean of this Gaussian. It is

τα α0+τ ∑jyi, j-βi vi, j

τ+ni τα

All we have said is something that we didn’t do much with back in Chapter 12, because I thought it 
was too much math for our course, but it boiled down to “the likelihood that is conjugate to a Gaus-
sian prior is another Gaussian distribution.” Meaning that when you take the product of a Gaussian 
prior with a Gaussian likelihood you get a Gaussian posterior, just with new parameters.

Of course, we know how to normalize and sample Gaussians! Even when they have messy coefficients. 
So what we have shown is that when the Gibbs sampling algorithm needs to move along the αi axis in 
this 217-dimensional posterior, it just has to sample from this new and messy, but 1-dimensional 
Gaussian distribution.

The above formulas can be found on p. 30 of Chapter 2.
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The Power of Factorization for the τ Axis

It would be a good exercise to do another axis and show that what happened on the αi axis wasn’t a 
fluke. Every axis has a simple interpretation. For example, we could go along the τ axis. Then the only 
factors that depend on τ are:

P(τ) ∝ τu-1+∑jn j2 ∏i e-τ ∑i, jyi, j-αi-βi vi, j
22 e-uτ

This is just another gamma distribution! The prior had a gamma distributed τ, and then we multiplied 
it by a likelihood involving the data and τ, and we get another gamma distribution. Remembering that 
gamma distributions look like

g(τ; α, β) ∝ τα-1 e-βτ

We need to compare and discover what the new α and β are. Doing that comparison, we get that

α = u + ∑j n j 2

and

β = -u +∑i, j yi, j - αi - βi vi, j
2 2

So when the Gibbs sampling algorithm needs to move along the τ axis, it just has to sample from this 
new and messy but one-dimensional gamma distribution.

The Power of Factorization for the τα Axis

As one more axis to consider as an example, we could go along the τα axis. Then the only factors that 
depend on τα are:

P(τα) ∝ ταu-1+n/2 e-∑iτα(αi-α0)22 e-uτα

This is yet another gamma distribution! The prior had a gamma distributed τ, and then we multiplied 
it by a likelihood involving the data and τ, and we get another gamma distribution. Just as with the τ 
axis, we need to do a comparison. This time with:

g(τα; α, β) ∝ ταα-1 e-β τα

Again, we need to compare and discover what the new α and β are.
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Doing that comparison, we get that

α = u + n /2

and

β = -u +∑i (αi - α0)2 2

So when the Gibbs sampling algorithm needs to move along the τα axis, it just has to sample from yet 
another new and messy but one-dimensional gamma distribution.

These formulas can be found on p. 31 of Chapter 2.

The Conclusion
You would still have to write a lot of code to sample along each axis with Gibbs sampling if only 
because the means, variances, alphas, and betas are messy. Maybe that is why it took until 1994 for 
the BUGS program to mature and be published.

However, moving one axis at a time has for every parameter become a one-dimensional and 
tractable problem involving distributions we are already completely familiar with: namely Gaus-
sian distributions and gamma distributions.

That means we can get a representative distribution out of this 217-dimensional space using Gibbs 
sampling. Using these representative samples, we can inquire about the most important results from 
the Hepatitis B data. The parameter we are most interested in would be α0. Remember that roughly-
speaking, α0 controls the mean of the αi via the likelihood function,

Pα =
1

 2 π σα
n e-∑i(αi-α0)22 σα

2

and the αi represent the rate of increase of the Hepatitis B titers. We would also be interested in the 
variance of the αi and that roughly speaking can be found by examining tα = σα

-2. However, we don’t 
want to know the typical values of these things in the prior. We want to know what they central values 
and their ranges are in the posterior.
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The posterior was described by an very complex function, so complex it helped to have a graphic to 
interpret it:

You now know what every bubble in this diagram refers to.

The goal of looking closely at this case study is to see how the posterior can be practically sampled 
using Gibbs sampling, such as with the BUGS program.

The reference for the BUGS program is Gilks, Thomas, and Spiegelhalter, “A language and program for 
complex Bayesian modelling,” The Statistician, 43 (1994) 169-177, but I haven’t ever used the program 
or studied the original reference. I learned this stuff from Donovan and Mickey and Chapters 1 and 2 of 
Spiegelhalter, Best, Gilks, and Inskip.
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