
Monte Carlo Methods — Why Do They Work? — Part II
In Chapters 13, 15 and 16 Donovan and Mickey give us three specific Monte Carlo methods to consider:

* Chapter 13: The Metropolis algorithm, published 1953, but developed during the Manhattan 
project

* Chapter 15: The Metropolis-Hastings algorithm, published 1970, where Hastings made a critical 
improvement to the algorithm

* Chapter 16: The “Gibbs Sampling” (GS) algorithm, published 1984 by Geman and Geman, who 
were smoothing images

In the previous “Why Do They Work?” write-up, I showed why the Metropolis algorithm worked. In this 
write-up, I am going to show that Metropolis-Hastings works. I was surprised that the proof was a little 
more difficult than I had imagined, and getting the proof right told me I have to revise Problem Set 17 
a little.

The Metropolis-Hastings Algorithm

Let us summarize the Metropolis-Hastings algorithm. The situation we want to apply it to is still the 
same:

* We have n bins and a set of desired probabilities pi, where i runs from 1 to n.
* In our quarterly iPhone sales example, n was 4 and the four pi’s were 0.1, 0.2, 0.4, and 0.3.

Then the core of the algorithm (repeated ad nauseam) was:

Step 1: You are in bin i. You choose a random move from pi to p j. In Metropolis, the random move 

was to the nearest neighbor, and you had 0.5 chance of going to either of the two nearest neighbors. 
In Metropolis-Hastings, the probability of the random move is just denoted g( j i), which can be non-
zero for non-nearest neighbors, and furthermore the probabilities g( j i) don’t even have to be 
symmetric. E.g., it does not have to be the case that g(i j) = g( j 1).

Step 2: Compute the appropriate ratio. The appropriate ratio for going from i → j is 
p j

pi

g(i j)
g( j i)

. Now 

as you can see, unlike my proof for Metropolis, in Metropolis-Hastings, the ratio can be greater than 1. 
So that ratio has no chance of being conceptualized as a probability. In fact, if the appropriate ratio for 

going from i → j is 
p j

pi

g(i j)
g( j i)

 and is less than 1, then the appropriate ratio for going from j → i is pi

pi

g( j i)
g(i j)

 

which is exactly the inverse, will be greater than 1. So we clamp the ratio as follows: the clamped 

appropriate ratio for going from i → j is min
p j

pi

g(i j)
g( j i)

, 1. 

Step 3: Generate a random number between 0 and 1. If the number is less than clamped appropri-
ate ratio, move to the proposed bin, and make a tally there. Otherwise stay in the current bin and 
make another tally in the current bin.



Thinking Probabilistically Instead of Algorithmically

Suppose after running the algorithm for a while, the chance that the algorithm is currently in bin i is qi 
where i = 1, ... , n. Note that the qi do not have to be related to the pi. That relationship is what we are 
trying to prove! In fact, at the beginning, we start the algorithm off somewhere, and of course the qi 
are initially concentrated wherever we chose to start. We want to derive something about the qi once 
they settle down into an equilibrium.

Let’s think about the j → i transition and the i → j transition. Again, these do not have to be neighbors. 
The chance of being in bin j and going to bin i is:

q j*g(i j)*the clamped appropriate ratio for j → i

While the chance of being in bin i and going to bin j is:

qi*g( j i)*the clamped appropriate ratio for i → j

The Principle of Detailed Balance

When the q j settle down, all the flows out of any bin i must equal all the flows into that same bin. So 

we could write down: 

∑j qi*g( j i)*the appropriate ratio for i → j

= ∑j q j*g(i j)*the appropriate ratio for j → i

That would be called “The Principle of Balance.” But we are going to demand something stronger, 
which is “The Principle of Detailed Balance.” We are going to demand that the flow from bin i to bin j 
is equal to the flow from bin j to bin i. Certainly if we demand that, then the Principle of Balance is also 
true. So, we demand it, and see where it leads. In other words, we see if we can satisfy:

 qi*g( j i)*the appropriate ratio for i → j

= q j*g(i j)*the appropriate ratio for j → i

Now let’s stick in the clamped appropriate ratios, and the detailed balance condition becomes:

qi*g( j i)*min
p j

pi

g(i j)
g( j i)

, 1

= q j*g(i j)*min pi

p j

g( j i)
g(i j)

, 1

Remember that at least one of 
p j

pi

g(i j)
g( j i)

 or pi

p j

g( j i)
g(i j)

 was greater than or equal to 1 (because they are 

inverses of each other!). Just suppose it is 
p j

pi

g(i j)
g( j i)

 that is greater than or equal to 1. Well, in that case, 

min
p j

pi

g(i j)
g( j i)

, 1  is just 1 and min pi

p j

g( j i)
g(i j)

, 1  simplifies to pi

p j

g( j i)
g(i j)

.

So in that case, the Principle of Detailed Balance becomes:

qi*g( j i)*1

= q j*g(i j)* pi

p j

g( j i)
g(i j)

Look at the lovely cancellation of all the g factors! And this same cancellation would have happened if 

it was pi

p j

g( j i)
g(i j)

 that was greater than 1. Either way, we have:

qi = q j
pi

p j
            or          qi

pi
= q j

p j
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Concluding the Argument

Now once things have settled down, if the Principle of Detailed Balance is satisfied, it is true for every 
pair. So that means this ratio is the same ratio for any i and j. Let’s call the constant ratio ρ. We have 
shown that

q j

p j
= ρ

or 

q j = ρp j

The very last thing to observe is that the sum of all the p j is 1, because the p j are a probability distribu-

tion. And the sum of all the q j is 1, because the q j are also a probability distribution. The only way the 

p j and the q j can both be normalized is if ρ is 1.

We have shown that the Metropolis-Hastings version of Monte Carlo works! Every q j settles down to 

the corresponding p j.

This whole proof was surprisingly complicated. It told me I have to modify Problem Set 17 to use the 
clamped appropriate ratio. So I will be handing out an adjusted version of Problem Set 17 this 
morning.
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Footnote

I don’t see that the Principle of Detailed Balance has to be satisfied. Certainly the Principle of Balance 
has to be satisfied. I am unclear whether this distinction is a red flag telling me about a potential issue, 
or whether I just need to think about it harder to see that it is not in fact an issue. I think the argument 
that it is not an issue would go something like:

The Principle of Detailed Balance did not have to be satisfied. We assumed that it was and saw where 
it took us. Since it yielded a solution for the q j and whatever the q j settle down to has to be unique, 

then we have found the unique solution. The unique solution happens to satisfy the Principle of 
Detailed Balance, but since it does, it of course also satisfies the Principle of Balance. If we had found 
that The Principle of Detailed Balance was not satisfiable, then we would have had to try the weaker 
Principle of Balance and see what we could prove from that.
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