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SPAariME:
O ur imagination is stretched to the utmost, not, as 

in fiction, to imagine things which are not really there, 
hut just to comprehend those things which are there.

Richard P. Feynman

1.1 PARABLE OF THE SURVEYORS
d isa g re e on north w ard an d e ast w ard  
se p ara t io ns; a g re e on distance

Once upon a time there was a Daytime surveyor who measured off the king’s lands. 
He took his directions of north and east from a magnetic compass needle. Eastward 
separations from the center of the town square he measured in meters. The northward 
direction was sacred. He measured northward separations from the town square in a 
different unit, in miles. His records were complete and accurate and were often 
consulted by other Daytimers.

A second group, the Nighttimers, used the services of another surveyor. Her north 
and east directions were based on a different standard of north: the direction of the 
North Star. She too measured separations eastward from the center of the town square 
in meters and sacred separations northward in miles. The records of the Nighttime 
surveyor were complete and accurate. Marked by a steel stake, every corner of a plot 
appeared in her book, along with its eastward and northward separations from the 
town square.

Daytimers and Nighttimers did not mix but lived mostly in peace with one another. 
However, the two groups often disputed the location of property boundaries. Why? 
Because a given corner of the typical plot of land showed up with different numbers in 
the two record books for its eastward separation from the town center, measured in 
meters (Figure 1 -1). Northward measurements in miles also did not agree between the 
two record books. The differences were small, but the most careful surveying did not 
succeed in eliminating them. No one knew what to do about this single source of 
friction between Daytimers and Nighttimers.

One fall a student of surveying turned up with novel open-mindedness. Unlike all 
previous students at the rival schools, he attended both. At Day School he learned

D a y t im e su rv e y o r uses 
m a g n e t ic nort h

N ig h t t im e su rv e y o r uses 
N o r t h -S t a r  nor th
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magnetic
north

North-Star
north

magnetic
east

North-Star
east

N IG H T T I M E : N O R T H -ST A R N O RT H
FIGURE 1 -1 . The town as plotted by Daytime and Nighttime surveyors. Notice that the line of 
Daytime magnetic north just grazes the left side of the north gate, while the line of Nighttime North-Star 
north just grazes the right side of the same gate. Steel stakes A, B , C , D  driven into the ground mark the 
comers of a disputed plot of land. A r shown, the eastward separation of stake A  from the north-south line 
measured by the Daytime surveyor is different from that measured by the Nighttime surveyor.

St u d e n t  c o n v e r ts m iles to m e t e rs

from one expert his method of recording locations of gates of the town and corners of 
plots of land based on magnetic north. At Night School he learned the other method, 
based on North-Star north.

As days and nights passed, the student puzzled more and more in an attempt to find 
some harmonious relationship between rival ways of recording location. His attention 
was attracted to a particular plot of land, the subject of dispute between Daytimers and 
Nighttimers, and to the steel stakes driven into the ground to mark corners of this 
disputed plot. He carefully compared records of the two surveyors (Figure 1-1, Table
1- 1).

In defiance of tradition, the student took the daring and heretical step of converting 
northward measurements, previously expressed always in miles, into meters by multi-
plying with a constant conversion factor k. He found the value of this conversion factor 
to be ^ =  1609.344 meters/mile. So, for example, a northward separation of 3 miles 
could be converted to ^ X  3 miles =  1609.344 meters/mile X 3 miles =  4828.032 
meters. "At last we are treating both directions the same!” he exclaimed.

Next the student compared Daytime and Nighttime measurements by trying 
various combinations of eastward and northward separation between a given stake 
and the center of the town square. Somewhere rhe student heard of the Pythagorean 
Theorem, that the sum of squares of the lengths of two perpendicular legs of a right 
triangle equals the square of the length of the hypotenuse. Applying this theorem, he 
discovered that the expression

Daytim e Daytim e
/  northward \ 2 eastward

k X 1 separation I + separation
\  (miles) /  _ (meters)

( 1- 1)



1.1 PARABLE OF THE SURVEYORS

------------------------------ iĈ ^ ^ B L E  1 - 1 ^ -------------------------------

T W O DIFFEREN T SETS OF RECORDS; SA ME PLOT OF LA ND
Daytime surveyor’s axes Nighttime surveyor's axes

oriented to magnetic north oriented to North-Star north
Eastward Northward Eastward Northward
(meters) (miles) (meters) (miles)

Town square 
Corner stakes:

0 0 0 0

Stake A 4010.1 1.8330 3950.0 1.8827
Stake B 5010.0 1.8268 4950.0 1,8890
Stake C 4000.0 1.2117 3960.0 1.2614
Stake D 5000.0 1.2054 4960.0 1.2676

based on Dayrime measurements of the position of steel stake C had exaaly the 
same numerical value as the quantity

N ighttim e N ighttim e
/  northward \ 2 eastward

k X  1 separation 1 + separation
V (miles) /  _ (meters)

( 1- 2)

computed from the readings of the Nighttime surveyor for stake C (Table 1-2). He

- C j ^ B L E

“ IN VARIA NT DIST A N CE”  FRO M CENTER OF TO W N SQ U ARE T O ST A KE C
(Data from  Table 1 - 1 )

Daytime measurements Nighttime measurements

Northward separation 
1.2117 miles

Northward separation 
1.2614 miles

Multiply by
k =  1609.344 meters/mile

Multiply by
k =  1609.344 meters/mile

to convert to meters: to convert to meters:
1950.0 meters 2030.0 meters
Square the value 3,802,500 (meters)^ Square the value 4,120,900 (meters)^
Eastward separation 
4000.0 meters

Eastward separation 
3960.0 meters

Square the value and add -b 16,000,000 (meters)^ Square the value and add +  15,681,600 (meters)^
Sum of squares =  19,802,500 (meters)^ Sum of squares =  19,802,500 (meters)^
Expressed as a 
number squared =  (4450 meters)^

Expressed as a 
number squared =  (4450 meters)^

This is the square 
of what measurement? 4450 meters

This is the square 
of what measurement? 4450 meters

i i
SAME

DISTANCE
from center of Town Square
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magnetic north

town square

D A Y T I M E : M A G N ET IC  N O RT H

North-Star north

N I G H H I M E ;  N O R T H -ST A R N O RT H

FIGURE 1 -2. The distance between stake A 
and the center of the town square has the same 
value for Daytime and Nighttime surveyors, 
even though the northward and eastward sepa-
rations, respectively, are not the same for the two 
surveyors.

D isc o v e r y : I n v a r i a n c e  o f d is t a n c e

cried the same comparison on recorded positions of stakes A, B, and D and found 
agreement here too. The student’s excitement grew as he checked his scheme of 
comparison for all stakes at the corners of disputed plots —  and found everywhere 
agreement.

Flushed with success, the student methodically converted all northward measure-
ments to units of meters. Then the student realized that the quantity he had calculated, 
the numerical value of the above expressions, was not only the same for Daytime and 
Nighttime measurements. It was also the square of a length: (meters)^. He decided to 
give this length a name. He called it the d istance from the center of town.

(1-3)

He said he had discovered the p rincip le  o f invariance o f distance; he reckoned 
exactly the same value for distance from Daytime measurements as from Nighttime 
measurements, despite the fact that the two sets of surveyors’ numbers differed 
significantly (Figure 1-2).

After some initial confusion and resistance, Day timers and Nighttimers welcomed 
rhe srudent’s new idea. The invariance of distance, along with further results, made it 
possible to harmonize Daytime and Nighttime surveys, so everyone could agree on the 
location of each plot of land. In this way the last source of friction between Day timers 
and Nightrimers was removed.

northward 2 eastward
(distance)^ — separarion

(meters)
+ separarion

(meters)
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1.2 SURVEYING SPACETIME
d isa g re e on se p ara t io ns in sp ace an d t im e ; 
a g re e on sp ace tim e interval

The Parable of the Surveyors illustrates the naive state of physics before the discovery 
of special relativity  by Einstein of Bern, Lorentz of Leiden, and Poincare of Paris. 
Naive in what way? Three central points compare physics at the turn of the twentieth 
century with surveying before the student arrived to help Daytimers and Nighttimers.

First, surveyors in the mythical kingdom measured northward separations in a 
sacred unit, the mile, different from the unit used in measuring eastward separations. 
Similarly, people smdying physics measured time in a sacred unit, called the second, 
different from the unit used to measure space. No one suspected the powerful results 
of using the same unit for both, or of squaring and combining space and time 
separations when both were measured in meters. Time in meters is just the time it takes 
a light flash to go that number of meters. The conversion factor between seconds and 
meters is the speed of light, c =  299,792,458 meters/second. The velocity of light c 
(in meters/second) multiplied by time t (in seconds) yields ct (in meters).

The speed of light is the only natural constant that has the necessary units to convert 
a time to a length. Historically the value of the speed of light was regarded as a sacred 
number. It was not recognized as a mere conversion factor, like the factor of conversion 
between miles and meters —  a factor that arose out of historical accident in human-
kind’s choice of units for space and time, with no deeper physical significance.

Second, in the parable northward readings as recorded by two surveyors did not 
differ much because the two directions of north were inclined to one another by only 
the small angle of 1.15 degrees. At first our mythical student thought that small 
differences between Daytime and Nighttime northward measurements were due to 
surveying error alone. Analogously, we used to think of the separation in time between 
two electric sparks as the same, regardless of the motion of the observer. Only with the 
publication of Einstein’s relativity paper in 1905 did we learn that the separation in 
time between two sparks really has different values for observers in different states of 
motion —  in different frames.

Think of John standing quietly in the front doorway of his laboratory building. 
Suddenly a rocket carrying Mary flashes through rhe front door past John, zooms 
down the middle of the long corridot, and shoots out the back door. An antenna 
projects from the side of Mary’s rocket. As the rocket passes John, a spark jumps across 
rhe 1-millimeter gap between the antenna and a pen in John’s shirt pocket. The rocket 
continues down the corridor. A second spark jumps 1 millimeter between the antenna 
and the fire extinguisher mounted on the wall 2 meters farther down the corridor. Still 
latet other metal objects nearer the rear receive additional sparks from the passing 
rocket before it finally exits through the rear door.

John and Mary each measure the lapse of time between “pen spark” and “fire- 
extinguisher spark.” They use accurate and fast electronic clocks. John measures 
this time lapse as 33.6900 thousand-millionths of a second (0.0000000336900 
second =  33.6900 X 10“  ̂ second). This equals 33.6900 nanoseconds in the 
terminology of high-speed electronic circuitry. (One nanosecond =  10~^ second.) 
Mary measures a slightly different value for the time lapse between the two sparks, 
33.0228 nanoseconds. For John the fire-extinguisher spark is separated in space by 
2.0000 meters from the pen spark. For Mary in the rocket the pen spark and 
fire-extinguisher spark occur at the same place, namely at the end of her antenna. Thus 
fot her their space separation equals zero.

Later, laboratory and rocket observers compare their space and time measurements 
between the various sparks (Table 1-3). Space locations and time lapses in both frames 
are measured from the pen spark.

T h e se c o n d : A  sa c r e d  unit

S p e e d  o f  lig h t c o n v e r ts se c o n d s 
to m e t e rs

Tim e b e t w e e n  e v e n ts: D i f f e re n t  
f o r d i f f e re n t  f r a m es

O n e  o b se r v e r  u ses l a b o r a t o r y  
f r a m e

A n o t h e r o b se r v e r  uses ro c k e t  
f r a m e
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-------------------- C [ ^ B L E l - 3 ^ > --------------------

SPACE A ND TIME LOCATIO NS OF THE SA ME 
SPARKS AS SEEN BY T W O O BSERVERS

Distance and time between sparks as measured by observer who is
standing in laboratory (John) moving by in rocket (Mary)

Distance
(meters)

Time
(nanoseconds)

Distance
(meters)

Time
(nanoseconds)

Reference spark 
(pen spark)

0 0 0 0

Spark A
(fire-extinguisher
spark)

2.0000 33.6900 0 33.0228

Spark B 3.0000 50.5350 0 49.5343
Spark C 5.0000 84.2250 0 82.5572
Spark D 8.0000 134.7600 0 132.0915

D isc o v e r y : I n v a r i a n c e  o f 
sp a c e t i m e  in t e rv a l

The third point of comparison between the Parable of the Surveyors and the state of 
physics before special relativity is this: The mythical student’s discovery of the concept 
of distance is matched by the Einstein -  Poincare discovery in 1905 of the invariant 
spacetim e in terval (formal name Lorentz in terval, but we often say just in te r-
val), a central theme of this book. Let each time measurement in seconds be converted 
to meters by multiplying it by the “conversion factor c "  the speed of light:

c =  299,792,458 meters/second =  2.99792458 X 10* meters/second 
=  0.299792458 X 10^ meters/second =  0.299792458 meters/nanosecond

Then the square of the spacetime interval is calculated from the laboratory observer’s 
measurements by subtracting the square of the space separation from the square of the 
time separation. Note the minus sign in equation (1-4).

Laboratory Laboratory
/  time \ 2 space

(interval)^ = c X 1 separation 1 — separation
V (seconds) /  _ (meters)

(1-41

The rocket calculation gives exactly the same value of the interval as the laboratory 
calculation.

R ocket R ocket
/  time \ 2 space

(interval)^ = c X 1 separation 1 
V (seconds) /  _

separation
(meters)

(1-5)

even though the respective space and time separations are not the same. Two observers 
find different space and time separations, respectively, between pen spark and fire- 
extinguisher spark, but when they calculate the spacetime interval between these 
sparks their results agree (Table 1-4).

The student surveyor found that invariance of distance was most simply written 
with both northward and eastward separations expressed in the same unit, the meter. 
Likewise, invariance of the spacetime interval is most simply written with space and



1.2 SURVEYING SPACETIME

- C ^ A B L E

“ IN VARIA NT SPACETIME IN TERV AL”  FRO M REFERENCE SPARK TO SPARK A
(Data from Table 1-3]

Laboratory measurements Rocket measurements

Time lapse
33.6900 X 10-« seconds 
=  33.6900 nanoseconds 
Multiply by 
r =  0.299792458 
meters per nanosecond 
to convert to meters: 
10.1000 meters 
Square the value 102.010 (meters)^

Time lapse
33.0228 X 10-9 seconds 
=  33.0228 nanoseconds 
Multiply by 
f =  0.299792458 
meters per nanosecond 
to convert to meters: 
9.9000 meters 
Square the value 98.010 (meters)^

Spatial separation 
2.000 meters
Square the value and subtract — 4.000 (meters)^

Spatial separation 
zero
Square the value and subtraa -  0

Result of subtaction =  98.010 (meters)^ Result of subtaction =  98.010 (meters)^
expressed as a 
number squared =  (9.900 meters)^

expressed as a 
number squared =  (9.900 meters)^

This is the square 
of what measurement? 9.900 meters

This is the square 
of what measurement? 9.900 meters

i i
SAME SPACETIME
INTERVAL

from the reference event

time separations expressed in the same unit. Time is converted to meters: t (meters) = 
£• X t (seconds). Then the interval appears in simplified form:

time 2 space
(interval)^ — separation — separation

(meters) (meters)
( 1- 6 )

The invariance o f the spacetim e in terval —  its independence of the state of 
motion of the observer —  forces us to recognize that time cannot be separated from 
space. Space and time are part of a single entity, spacetim e. Space has three 
dimensions: northward, eastward, and upward. Time has one dimension: onward! 
The interval combines all four dimensions in a single expression. The geometry of 
spacetime is truly four-dimensional.

To recognize the unity of spacetime we follow the procedure that makes a landscape 
take on depth— we look at it from several angles. That is why we compare space and 
rime separations between events A  and B as recorded by two different observers in 
relative motion.

S p a c e  a n d  t ime a r e  
p a r t  o f  sp a c e t i m e

Why the minus sign in the equation for the interval? Pythagoras tells us to AD D  the 
squares of northward and eastward separations to get the square of the distance. Who 
tells us to SUBTRACT the square of the space separation between events from the square 
of their time separation in order to get the square of the spacetime interval?
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Shocked? Then you’re well on the way to understanding the new world of very fast 
motion! This world goes beyond the three-dimensional textbook geometry of Euclid, 
in which distance is reckoned from a sum of squares. In this book we use another 
kind of geometry, called Lorentz geometry, more real, more powerful than Euclid 
for the world of the very fast. In Lorentz geometry the squared space separation is 
combined with the squared time separation in a new way— by subtraction. The 
result is the square of a new unity called the spacetime intervalhtvf/ttn events. The 
numerical value of this interval is invariant, the same for all observers, no matter 
how fast they are moving past one another. Proof? Every minute of every day an 
experiment somewhere in the world demonstrates it. In Chapter 3 we derive the 
invariance of the spacetime interval— with its minus sign— from experiments. 
They show the finding that no experiment conducted in a closed room will reveal 
whether that room is “at rest’’ or “in motion” (Einstein’s Principle of Relativity). 
We won’t wait until then to cash in on the idea of interval. We can begin to enjoy the 
payoff right now.

S A M P L E  P R O B L E M  l - i ;
S P A R K I N G  A T A F A S T E R  R A T E

Another, even faster rocket follows the first, enter-
ing the ftont door, zipping down the long corridor, 
and exiting through the back doorway. Each time 
the rocket clock ticks it emits a spark. As before, 
the first spark jumps the 1 millimeter from the 
passing rocket antenna to the pen in the pocket of

John, the laboratory observer. The second flash 
jumps when the rocket antenna reaches a door-
knob 4.00000000 meters farther along the hall as 
measured by the laboratory observer, who records 
the time between these two sparks as 16.6782048 
nanoseconds.

a . What is the time between sparks, measured in meters by John, the laboratory 
observer?

b. What is the value of the spacetime interval between the two events, calculated 
from John’s laboratory measurements?

c. Predict: What is the value of the interval calculated from measurements in the 
new racket frame?

d. What is the distance between sparks as measured in this rocket frame?

e . What is the time (in meters) between sparks as measured in this rocket frame? 
Com pare w ith the tim e between the same sparks as measured by John  in the 
laboratory frame.

f. What is the speed of this rocket as measured by John in the laboratory?

SOLUTIO N
a . Time in meters equals time in nanoseconds multiplied by the conversion factor, 

the speed of light in meters per nanosecond. For John, the laboratory observer,

16.6782048 nanoseconds X 0.299792458 meters/nanosecond
== 5.00000000 meters

b. The square of the interval between two flashes is reckoned by subtracting the 
square of the space separation from the square of the time separation. Using 
laboratory figures:

(interval)^ =  (laboratory time)^ — (laboratory distance)^ 
=  (5 meters)^ — (4 meters)^ =  25 (meters)^ - 
=  9 (meters)^ ~  (3 meters)^

16 (meters)^
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Therefore the interval between the two sparks has the value 3 meters (to nine 
significant figures).

c. We strongly assert in this chapter that the spacetim e in terval is invarian t — 
has the same value by whomever calculated. Accordingly, the interval between 
the two sparks calculated from rocket observations has the same value as the 
interval (3 meters) calculated from laboratory measurements.

d. From the rocket rider’s viewpoint, both sparks jump from the same place, namely 
the end of her antenna, and so distance between the sparks equals zero for the 
rocket rider.

e . We know the value of the spacetime interval between two sparks as computed in 
the rocket frame (c). And we know that the interval is computed by subtracting 
the square of the space separation from the square of the time separation in the 
rocket frame. Finally we know that the space separation in the rocket frame 
equals zero ( d ) .  Therefore the rocket time lapse between the two sparks equals the 
interval between them;

(interval)^ =  (rocket time)^ — (rocket distance)^
(3 meters)^ =  (rocket time)^ — (zero)^

from which 3 meters equals the rocket time between sparks. Compare this with 5 
meters of light-travel time between sparks as measured in the laboratory frame.

f. Measured in the laboratory frame, the rocket moves 4 meters of distance (state-
ment of the problem) in 5 merers of light-travel time (a). Therefore its speed in 
the laboratory is 4 /5  light speed. Why? Well, light moves 4 meters of distance in 
4 meters of time. The rocket takes longer to cover this distance: 5 meters of time. 
Suppose that instead of 5 meters of time, the rocket had taken 8 meters of time, 
twice as long as light, to cover rhe 4 meters of disrance. In that case it would be 
moving at 4 /8  —  or half— the speed of light. In the present case the rocket 
travels the 4 meters of distance in 5 meters of time, so it moves at 4 /5  light speed. 
Therefore its speed equals

(4/5) X 2.99792458 X 10® meters/second
2.3983397 X 10® meters/second

1.3 EVENTS AND INTERVALS ALONE!
tools enough to chart m at ter an d motion 
without a n y re ference fra m e

In surveying, rhe fundamental concept is place. The surveyor drives a steel stake to 
mark the corner of a plot of land —  to mark a place. A second stake marks another 
corner of the same plot —  another place. Every surveyor —  no matter what his or her 
standard of north —  can agree on the value of the distance between the two stakes, 
between the two places.

Every stake has its own reality. Likewise the distance between every pair of srakes 
also has its own teality, which we can experience direcrly by pacing off the straight line 
from one stake to the other stake. The reading on our pedometer— the distance

Su rv e y in g  l o c a t e s a  p l a c e
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P h ysics l o c a t e s a n  e v e n t

W rist w a t c h  m e asu r es 
in t e rv a l d ir e c t ly

between stakes— is independent of all surveyors’ systems, with their arbitrary choice 
of north.

More: Suppose we have a table of distances between every pair of stakes. That is all 
we need! From this table and the laws of Euclidean geometry, we can constmct the 
map of every surveyor (see the exercises for this chapter). Distances between stakes: 
That is all we need to locate every stake, every place on the map.

In physics, the fundamental concept is event. The collision between one particle 
and another is an event, with its own location in spacetime. Another event is the 
emission of a flash of light from an atom. A third is the impact of the pebble that chips 
the windshield of a speeding car. A fourth event, likewise fixing in and by itself a 
location in spacetime, is the strike of a lightning bolt on the rudder of an airplane. An 
event matks a location in spacetime; it is like a steel stake driven into spacetime.

Every laboratory and rocket observer— no matter what his or her relative velocity 
— can agree on the spacetime interval between any pair of events.

Every event has its own reality. Likewise the interval between every pair of events 
also has its own reality, which we can experience directly. We carry our wristwatch at 
constant velocity from one event to the other one. It is not enough just to pass through 
the two physical locations— we must pass through the actual events', we must be at 
each event precisely when it occurs. Then the space separation between the two events 
is zero for us —  they both occur at our location. As a result, our wristwatch reads 
directly the spacetime interval between the pait of events:

(interval)^ —
time

separation
(meters)

time
separation
(meters)

space
separation
(meters)

— [zero]^
time

separation
(meters)

[wristwatch time}

‘ D o  sc i e n c e ”  w ith in t e r v a ls a lo n e

The time read on a wristwatch carried between two events —  the interval between 
those events —  is independent of all laboratory and rocket reference frames.

More: To chart all happenings, we need no more than a table of spacetime intervals 
between every pair of events. That is all we need! From this table and the laws of 
Lorentz geometry, it turns out, we can construct the space and time locations of events 
as observed by every laboratory and rocket observet. Intervals between events: That is 
all we need to specify the location of every event in spacetime.

In brief, we can completely describe and locate events entirely without a reference 
frame. We can analyze the physical world— we can “do science” —  simply by 
cataloging every event and listing the interval between it and every other event. The 
unity of spacetime is reflected in the simplicity of entries in our table: intervals only.

O f course, if we want to use a reference frame, we can do so. We then list in our table 
the individual northward, eastward, upward, and time separations between pairs of 
events. However, these laboratory-frame listings for a given pair of events will be 
different from the corresponding listings that our rocket-frame colleague puts in her 
table. Nevertheless, we can come to agreement if we use the individual separations to 
reckon the interval between each pair of events:

(interval)^ — (time separation)^ — (space separation)^

That returns us to a universal, frame-independent description of the physical world.

When two events both occur at the position of a certain clock, that special clock 
measures directly the interval between these two events. The interval is called the 
p ro p e r  tim e (or sometimes the local tim e). The special clock that records the 
proper time directly has the name p ro p e r  clock  for this pair of events. In this book
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we often call the proper time the w ristw atch  tim e and the proper clock the 
w ristw atch  to emphasize that the proper clock is carried so that it is “present” at 
each of the two events as the events occur.

In Einstein’s German, the word for proper time is Eigenzeil, or “own-time,” 
implying “one’s very own time.” The German word provides a more accurate 
description than the English. In English, the word “proper” has come to mean 
“ following conventional mles.” Proper time certainly does not do that!

Hey! I just thought of something: Suppose two events occur at the same time in my frame 
but very fa r  apart, for example two handclaps, one in New York City and one in San 
Francisco. Since they are simultaneous in my frame, the time separation between 
handclaps is zero. But the space separation is not zero— they are separated by the width 
of a continent. Therefore the square of the interval is a negative number:

{interval^ =  (time separation^ — (space separation)^
=  (zero)^ — (space separation)^ =  — (space separation)^

How can the square of the spacetime interval be negative?

In most of the situations described in the present chapter, there exists a reference 
frame in which two events occur at the same place. In these cases time separation 
predominates in all frames, and the interval squared will always be positive. We call 
these intervals tim elike  in tervals.

Euclidean geometry adds squares in reckoning distance. Hence the result of the 
calculation, distance squared, is always positive, regardless of the relative magni-
tudes of north and east separations. Lorentz geometry, however, is richer. For your 
simultaneous handclaps in New York City and San Francisco, space separation 
between handclaps predominates. In such cases, the interval is called a spacelike 
in te rval and its form is altered to

(interval)^ =  (space separation)^ — (time separation)^ [when spacelike]

This way, the squared interval is never negative.
The timelike interval is measured directly using a wristwatch carried from one 

event to the other in a special frame in which they occur at the same place. In contrast, 
a spacelike interval is measured directly using a rod laid between the events in a 
special frame in which they occur at the same time. This is the frame you describe in 
your example.

Spacelike interval or timelike interval: In either case rhe interval is invariant— has 
the same value when reckoned using rocket measurements as when reckoned using 
laboratory measurements. You may want to skim through Chapter 6 where timelike 
and spacelike intervals are described more fully.

1.4 SAME UNIT FOR SPACE AND TIME: 
METER, SECOND, MINUTE, OR YEAR

meter for p ar t ic le  a cce le ra to rs; minute for 
p la n e ts; year for the cosmos

The parable of the surveyors cautions us to use the same unit to measure both space 
and time. So we use meter for both. Time can be measured in meters. Let a flash of 
light bounce back and forth between parallel mirrors separated by 0.5 meter of

M e asu r e  t ime in m e t e rs
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0 .5 meter

FIGURE 1 -3 . This two-mirror “clock" sends to 
the eye flash after flash, each separated from the 
next by 1 meter of light-travel time. A light 
flash (represented by an asterisk) bounces back 
and forth between parallel mirrors separated 
from one another by 0.5 meter of distance. The 
silver coating of the right-hand mirror does not 
reflect perfectly: It lets 1 percent of the light pass 
through to the eye each time the light pulse hits 
it. Hence the eye receives a pulse of light every 
meter of light-travel time.

M e t e r o f f ic i a l ly  d e f in e d  
usin g  lig ht sp e e d

M e asu r e  d is t a n c e  in l i g h t - y e a rs

distance (Figure 1-3). Such a device is a “clock” that “ticks” each time the light flash 
arrives back at a given mirror. Between ticks the light flash has traveled a round-trip 
distance of 1 meter. Therefore we call the stretch of time between ticks 1 m eter o f 
light-travel tim e or more simply 1 m ete r o f  tim e.

One meter of light-travel time is quite small compared to typical time lapses in 
our everyday experience. Light travels nearly 300 million meters per second 
(300,000,000 meters/second =  3 X 10® meters/second, four fifths of the way to 
Moon in one second). Therefore one second equals 300 million meters of lighr-travel 
time. So 1 meter of light-travel time has the small value of one three-hundred-mil- 
lionth of a second. [How come? Because (1) light goes 300 million meters in one 
second, and (2) one three-hundred-millionth of that distance (one meter!) is covered in 
one three-hundred-millionrh of that time.] Nevertheless this unit of time is very useful 
when dealing with light and with high-speed particles. A proton early in its travel 
through a particle accelerator may be jogging along at “only” one half the speed of 
light. Then it travels 0.5 meter of distance in 1 meter of light-travel time.

We, our cars, even our jet planes, creep along at the pace of a snail compared with 
light. We call a deed quick when we’ve done it in a second. But a second for light 
means a distance covered of 300 million meters, seven trips around Earth. As we dance 
around the room to the fastest music, oh, how slow we look to light! Not zooming. 
Not dancing. Not creeping. Oozing! That long slow ooze racks up an enormous 
number of meters of light-travel time. That number is so huge that, by the end of one 
step of our frantic dance, the light that carries the image of the step’s beginning is well 
on its way to Moon.

In 1983 the General Conference on Weights and Measures officially redefined the 
meter in terms of the speed of light. T he m eter is now  defined as the  d istance 
th a t light travels in a vacuum  in the  fraction  1/299,792,458 o f a second. 
(For the definition of the second, see Box 3-2.) Since 1983 the speed of light is, by 
definition, equal to c =  299,792,458 meters/second. This makes official the central 
position of the speed of light as a conversion factor between time and space.

This official action defines distance (meter) in terms of time (second). Every day we 
use time to measure distance. “My home is only ten minutes (by car) from work.” 
“The business district is a five-minute walk.” Each statement implies a speed —  the 
speed of driving or walking— that converts distance to time. But these speeds can 
vary— for example, when we get caught in traffic or walk on cmtches. In contrast, the 
speed of light in a vacuum does not vary. It always has the same value when measured 
over time and the same value as measured by every observer.

We often describe distances to stars and galaxies using a unit of time. These 
distances we measure in light-years. One light-year equals the distance that light 
travels in one year. Along with the light-year of space goes the year of time. Here again, 
space and time are measured in the same units— years. Here again the speed of light is 
the conversion factor between measures of time and space. From our everyday per-
spective one light-year of space is quite large, almost 10,000 million million meters: 1 
light-year =  9,460,000,000,000,000 meters =  0.946 X 10*® meters. Nevertheless 
it is a convenient unit for measuring distance between stars. For example, the nearest 
star to our Sun, Proxima Centauri, lies 4.28 light-years away.

Any common unit of space or time may be used as the same unit for both space and 
time. For example. Table 1-5 gives us another convenient measure of time, seconds, 
compared with time in meters. We can also measure space in the same units, 
light-seconds. Our Sun is 499 light-seconds —  or, more simply, 499 seconds —  of 
distance from Earth. Seconds are convenient for describing distances and times among 
events that span the solar system. Alternatively we could use minutes of time and 
light-minutes of distance: Our Sun is 8.32 light-minutes from Earth. We can also use 
hours of time and light-hours of distance. In all cases, the speed of light is the 
conversion factor between units of space and time.
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-------- d ^ B L E  --------

SO ME LIG H T-TRA VEL TIMES
Time in seconds 

of light-travel time Time in meters

Telephone call one way:
New York City to San Francisco 
via surface microwave link

0.0138 4.139,000

Telephone call one way:
New York City to San Ftancisco 
via Earth satellite

0.197 59,000,000

Telephone call one way:
New York City to San Francisco 
bounced off Moon

2.51 752,000,000

Flash of light: 
Emitted by Sun, 
received on Earth

499.0 149,600,000.000

Expressing time and space in the same unit m ete r is convenient for describing 
motion of high-speed particles in the confines of the laboratory. Time and space in the 
same unit second (or m inu te  or hour) is convenient for describing relations among 
events in our solar system. Time and space in the same unit year is convenient for 
describing relations among stars and among galaxies. In all three arenas spacetime is 
the stage and special relativity is the spotlight that illuminates the inner workings of 
Nature.

U se  c o n v e n ie n t  uni ts, 
t h e sa m e  f o r s p a c e  a n d  t ime

We are not accustomed to measuring time in meters. So as a reminder to ourselves 
we add a descriptor: meters of light-travel time. But the unit of time is still the meter. 
Similarly, the added words “seconds of distance" and ‘‘light-years’’ help to remind 
us that distance is measured in seconds or years, units we usually associate with time. 
But this unit of distance is really just second or year. The modifying descriptors are 
for our convenience only. In Nature, space and time form a unity: spacetime!

The words sound OK. The mathematics appears straightforward. The Sample Problems 
seem logical. But the ideas are so strange! Why should I believe them? How can 
invariance of the interval be proved?

No wonder these ideas seem strange. Particles zooming by at nearly the speed of 
light —  how far this is from our everyday experience! Even the soaring jet plane 
crawls along at less than one-millionth light speed. Is it so surprising that the world 
appears different at speeds a million times faster than those at which we ordinarily 
move with respect to Earth?

The notion of spacetime interval distills a wealth of real experience. We begin with 
interval because it endures: It illuminates observations that range from rhe core of a 
nucleus to the center of a black hole. Understand the spacetime interval and you 
vault, in a single bound, to the heart of spacetime.

Chapter 3 presents a logical proof of the invariance of the interval. Chapter 4 
reports a knock-down argument about it. Chapters that follow describe many 
experiments whose outcomes are rorally incomprehensible unless the interval is 
invariant. Real verification comes daily and hourly in the on-going enterprise of 
experimental physics.
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S AMPL E  PROB L EM  1-2

P R O T O N ,  R O C K ,  A N D  S T A R S H I P

a . A proton moving at 3 /4  light speed (with respect to the laboratory) passes 
through two detectors 2 meters apart. Events 1 and 2 are the transits through the 
two detectors. What are the laboratory space and time separations between the 
two events, in meters? What are the space and time separations between the 
events in the proton frame?

b. A speeding rock from space streaks through Earth’s outer atmosphere, creating a 
short fiery rrail (Event 1) and continues on its way to crash into Sun (Event 2) 10 
minutes later as observed in the Earth frame. Take Sun to be 1.4960 X 10“  
meters from Earth. In the Earth frame, what are space and time separations 
between Event 1 and Event 2 in minutes? What are space and time separations 
between the events in the frame of the rock?

c. In the twenty-third century a starship leaves Earth (Event 1) and travels at 95 
percent light speed, later arriving at Proxima Centauri (Event 2), which lies 4.3 
light-years from Earth. What are space and time separations between Event 1 and 
Event 2 as measured in the Earth frame, in years? What are space and time 
separations between these events in the frame of the starship?

SOLUTIO N
a . The space separation measured in the laboratory equals 2 meters, as given in the 

problem. A flash of light would take 2 meters of light-travel time to travel 
between the two detectors. Something moving at 1 /4  light speed would take four 
times as long: 2 meters/( 1 /4 ) =  8 meters of light-travel time to travel from one 
detector to the other. The proton, moving at 3 /4  light speed, takes 2 meters/ 
(3/4) =  8 /3  meters =  2.66667 meters of light-travel time between events as 
measured in the laboratory.

Event 1 and Event 2 both occur at the position of the proton. Therefore the 
space separation between the two events equals zero in the proton frame. This 
means that the spacetime interval —  the proper time— equals the time between 
events in the proton frame.

(proton time)^ — (proton distance)^ =  (interval)^ =  (lab time)^ — (lab distance)^ 
(proton time)^ — (zero)^ =  (2.66667 meters)^ ~  (2 meters)^

=  (7.1111— 4) (meters)^
(proton time)^ =  3.1111 (meters)^

So time between events in the proton frame equals the square root of this, or 
1.764 meters of time.

b. Light travels 60 times as far in one minute as it does in one second. Its speed in 
meters per minute is therefore:

2.99792458 X 10® meters/second X 60 seconds/minute
=  1.798754748 X 10̂ ® meters/minute

So the distance from Earth to Sun is

1.4960 X 10“  meters
1.798754748 X 10̂ ® meters/minute

— 8.3169 light-minutes



This is the distance between the two events in the Earth frame, measured in 
light-minutes. The Earth-frame time between the two events is 10 minutes, as 
stated in the problem.

In the frame traveling with the rock, the two events occur at the same place; the 
time between the two events in this frame equals the spacetime interval —  the 
proper time— between these events:

(interval)^ =  (10 minutes)^ — (8.3169 minutes)^
=  (100 -  69.1708) (minutes)^
=  30.8292 (minutes)^

The time between events in the rest frame of the rock equals the square root of 
this, or 5.5524 minutes.

c. The distance between departure from Earth and arrival at Proxima Centauri is 
4.3 light-years, as given in the problem. The starship moves at 95 percent light 
speed, or 0.95 light-years/year. Therefore it takes a time 4.3 light-years/(0.95 
light-years/year) =  4.53 years to arrive at Proxima Centauri, as measured in the 
Earth frame.

Starship time between departure from Earth and arrival at Proxima Centauri 
equals the interval:

(interval)^ =  (4.53 years)^ ~  (4.3 years)^
=  (20.52 -  18.49) (years)2 
=  2.03 (years)^

The time between events in the rest frame of the starship equals the square root of 
this, or 1.42 years. Compare with the value 4.53 years as measured in the Earth 
frame. This example illustrates the famous idea that astronaut wristwatch time 
—  proper time — between two events is less than the time between these events 
measured by any other observer in relative motion. Travel to stay young! This 
result comes simply and naturally from the invariance of the interval.

1.5 UNITY OF SPACETIME 1 5

1.5 UNITY OF SPACETIME
tim e an d sp a ce : e q u al footing but d istinct n a ture

When time and space are measured in the same unit— whether meter or second or 
year— the expression for the square of the spacetime interval between two events 
takes on a particularly simple form:

(interval)^ =  (time separation)^ — (space separation)^
=  ,2 _  „2 [same units for time and space]

This formula shows forth the unity of space and time. Impressed by this unity, 
Einstein’s teacher Hermann Minkowski (1864-1909) wrote his famous words, 
“Henceforth space by itself, and time by itself, are doomed to fade away into mere 
shadows, and only a union of the two will preserve an independent reality. ’ ’ Today this 
union of space and time is called spacetime. Spacetime provides the tme theater for

Sp a c e t i m e  is a  unit y
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PAYOFF OF THE PARABLE
from distance in space to interval in spacetime

DISCUSSIO N

Location m arker

G e n e ra l nam e for such a location  
marker

Ca n  its location b e st a k e d out for all 
to se e , in d e p en d en t o f a n y scheme  
of measurem ent , an d in d e p en d en t  
of all nu m bers?

Simple descrip t or o f se p ara t io n  
b e tw een two location m arkers

A re there w a ys direct ly to m easure 
this se p a ra t io n?

With en ough m arkers a lr e a d y  
sta k e d out, how can w e tell so m e �
o ne w h ere w e w an t the nex t o n e?

Inst ead o f b o ld ly staking out the 
new m arker , or inst ead o f p osit ion �
ing it rela t ive to exist ing m arkers, 
how e lse can w e p la ce the new  
m ark er?

N ature o f this re f ere n ce f ra m e?

H ow d o two such re f ere n ce fram es 
d i f f e r  f r o m  o n e  a n o t h e r ?

W h a t a re  na m es o f two such p ossi �
b le re f ere n ce f ra m es?

W h a t common unit simplif ies a n a ly �
sis o f the results?

W h a t is the co nversion fact or from 
co nven tio nal units to meters?

SURVEYIN G T O W N SH IP

Steel st a k e driven in ground

Poin t or p la ce

Yes

D ist ance

Yes

A N A LY Z I N G  N A TURE

Collisio n b e t w een two p ar t ic les 
Emission o f f lash from atom 
Sp ark jumping from an te n n a to pen

Even t

Yes

Sp ace t im e in terval

Yes

Sp ec i f y d ist a n ces from o ther Sp ec i f y sp a ce t im e in t erv a ls from
points. o ther even ts.

By locat ing point re la t ive to a  re f e r- By locating even t re la t ive to a r e f �
e n c e f ra m e e re n c e  f ra m e

Su rv e y o r ’s grid y ie lds northw ard  
a n d e ast w a rd  rea d in gs o f point 
(C h a p t er 1).

Is such a re f ere n ce fram e uniq ue? N o

Tilt o f o n e su rv e y o r’s grid rela t ive 
to the o ther

D ay t im e grid : orien te d to magnetic 
north
N ight t ime grid : o rien te d to N orth- 
Star north

The unit m e t e r for both northw ard  
an d e ast w ard  rea d in gs

Conver t ing miles to meters: 
k =  1 6 0 9 .3 4 4  meters/ mile

La t t ice f ra m e o f ro ds an d clocks 
y ie lds sp a c e  an d time re a d in gs of 
even t (C h a p t er 2).

N o

Uniform v e lo c i t y  of o ne fram e r e la �
tive to the o ther

La b o ra t o ry  f ra m e  
Rock e t f ra m e

The unit m e t e r for both sp a c e  an d  
time rea d in gs

Convert in g se co n ds to meters using 
the sp e e d  o f light: 
c =  2 9 9 ,7 9 2 ,4 5 8  m eters/second
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D ISCUSSIO N

For co n ven ie n ce , all m easurem ents 
a re  re f erre d to w ha t lo ca tion?

H o w d o rea d in gs for a single 
m arker dif fer b e t w een two re f e r �
e n ce f ra m es?

W he n w e ch a n g e from o ne m arker 
to two , how d o w e sp ec i f y the of fse t 
b e t w een them in re f erence- f ra m e  
la n g u a g e?

H o w to f igure from of fse t rea d in gs 
a  m easure o f se p ara t io n that has 
the sa m e value w h a t ev er the choice 
of re f e re n ce fra m e?

Figure ho w?

Result o f this reck onin g?

Phrase to sum marize this identity of 
se p ara t io n as f igured in two re f e r �
e n ce f ra m es?

Conc lusio ns from this a n a lysis?

SURVEYIN G T O W N SH IP  

A common origin (cen ter o f town)

Individual northw ard an d e ast w ard  
rea d in gs for o ne poin t —  for one 
st eel st a k e —  do not have the sa m e 
va lues resp ec t iv e ly  for two survey �
o rs’ grids that a r e  tilted re la t ive to 
o ne ano th er.

Su b trac t: Figure the d if f erence b e �
tw een e ast w ard  rea d in gs of the 
two points; a lso the di f f erence in 
northw ard rea d in gs.

Figure the d ist a n ce b e t w een the 
two poin ts.

(distance)^ =

/  d i f f e r e n c e  in V  
\ n o r t h w a r d  r e a d i n g s /

_l_ /  d i f f e r e n c e  in V  
\ e a s t w a r d  r e a d i n g s /

D istance b e tw een points as f igured 
from rea d in gs using o ne su rv e y o r’s 
grid is the sa m e as f igured from 
rea d in gs using a  se co n d su rv e y o r’s 
grid tilted with resp ec t  to first grid .

In v a r ia n ce o f the d ist a n ce be tw een  
poin ts

(1) N orth w ard an d e ast w ard  di �
m ensions a r e  p ar t o f a  sing le entity: 
sp a c e .

(2) D ist an ce is the sim ple m easure 
of se p ara t io n b e t w een two poin ts, 
natural b e c a use invarian t : the sa m e 
for dif ferent surveyor grids.

A N A LY Z I N G  N ATURE 

A common e v e n t  (re f e re n ce spark)

Individual sp a c e  an d time rea d in gs 
for o ne even t —  for o ne sp ark  —  
d o not h ave the sa m e va lues re �
sp ec t iv e ly for two fra m es that a r e  in 
motion rela t ive to o ne an o th er.

Su b trac t: Figure the di f f erence b e �
tw een sp a c e  re a d in gs o f the two 
even ts; a lso  the d if f erence in time 
rea d in gs.

Figure the sp a ce t im e in t erva l b e �
tw een the two ev en ts.

(in t erval) ^  =

/  d i f f e r e n c e  in V  
\ t im e r e a d i n g s /

_  /  d i f f e r e n c e  in 
\ s p a c e  r e a d i n g s /

In terval b e tw een even ts as f igured 
from re a d in gs using o ne la t t ice- 
w ork fra m e is the sa m e as f igured 
from rea d in gs using a  seco n d  
fram e in st e a d y straigh t-line motion 
re la t ive to first f ram e .

In v a r ia n ce o f  th e sp a ce t im e in ter �
v a l b e t w een even ts.

(1) Sp a c e  an d time dimensions a re  
p art o f a sing le enti ty: sp a ce t i m e .

(2) Sp ac e t im e in t erva l is the simple 
m easure o f se p ara t io n b e t w een  
two e v e n ts, natural b e c a use in var �
iant: the sa m e for dif ferent re f e r �
e n ce f ram es.
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D i f f e r e n c e  b e t w e e n  
t im e a n d  sp a c e

every event in the lives of stars, atoms, and people. Space is different for different 
observers. Time is different for different observers. Spacetime is the same for everyone.

Minkowski’s insight is central to the understanding of the physical world. It focuses 
attention on those quantities, such as spacetime interval, electrical charge, and particle 
mass, that are the same for all observers in relative motion. It brings out the merely 
relative character of quantities such as velocity, momentum, energy, separation in 
time, and separation in space that depend on relative motion of observers.

Today we have learned not to overstate Minkowski’s argument. It is right to say 
that time and space are inseparable parts of a larger unity. It is wrong to say that time is 
identical in quality with space.

Why is it wrong? Is not time measured in meters, just as space is? In relating the 
positions of two steel stakes driven into the ground, does not the surveyor measure 
northward and eastward separations, quantities of identical physical character? By 
analogy, in locating two events is not the observer measuring quantities of the same 
nature: space and time separations? How else could it be legitimate to treat these 
quantities on an equal footing, as in the formula for the interval?

Equal footing, yes; same nature, no. There is a minus sign in the formula for the 
interval squared =  (time separation)^ — (space separation)^ that no sleight of hand 
can ever conjure away. This minus sign distinguishes between space and time. No 
twisting or turning can ever give the same sign to real space and time separations in 
the expression for the interval.

The invariarxe of the spacetime interval evidences the unity of space and time while 
also preserving —  in the formula’s minus sign —  the distinction between the two.

The principles of special relativity are remarkably simple— simpler than the 
axioms of Euclidean geometry or the principles of operating an automobile. Yet both 
Euclid and the automobile have been mastered— perhaps with insufficient surprise 
—  by generations of ordinary people. Some of the best minds of the twentieth century 
stmggled with the concepts of relativity, not because nature is obscure, but because (1) 
people find it difficult to outgrow established ways of looking at namre, and (2) the 
world of the very fast described by relativity is so far from common experience that 
everyday happenings are of limited help in developing an intuition for its descriptions.

By now we have won the battle to put relativity in understandable form. The 
concepts of relativity can now be expressed simply enough to make it easy to think 
correctly —  “to make the bad difficult and the good easy. ’’ This leaves only the second 
difficulty, that of developing intuition —  a practiced way of seeing. We understand 
distance intuitively from everyday experience. Box 1.1 applies our intuition for 
d istance in  space to help our intuition for in terval in spacetim e.

To put so much into so little, to subsume all of Einstein’s teaching on light and 
motion in the single word spacetime, is to cram a wealth of ideas into a small picnic 
basket that we shall be unpacking throughout the remainder of this book.

REFERENCES
Introductory quote: Richard P. Feynman, The Character of Physical Law (MIT 
Press, Cambridge, Mass., 1967), page 127.

Quote from Minkowski in Section 1.5: H. A. Minkowski, “Space and Time,” in 
H. A. Lorentz et al., The Principle of Relativity (Dover Publications, New York, 
1952), page 75.
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INTRODUCTION TO THE EXERCISES

Important areas of current research can be analyzed 
very simply using the theory of relativity. This analy-
sis depends heavily on a physical intuition, which 
develops with experience. Wide experience is not easy 
to obtain in the laboratory— simple experiments in 
relativity are difficult and expensive because the speed 
of light is so great. As alternatives to experiments, the

exercises and problems in this text evoke a wide range 
of physical consequences of the properties of space- 
time. These properties of spacetime recur here over 
and over again in different contexts:

• paradoxes

• puzzles
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• derivations

• technical applications

• experimental results

• estimates

• precise calculations

• philosophical difficulties

The text presents all formal tools necessary to solve 
these exercises and problems, but intuition —  a prac-
ticed way of seeing — is best developed without 
hurry. For this reason we suggest continuing to do 
more and more of these exercises in relativity after you 
have moved on to material outside this book. The 
mathematical manipulations in the exercises and 
problems are very brief: only a few answers take more

than five lines to write down. On the other hand, the 
exercises require some “ruminarion time.”

In some chapters, exercises are divided inro rwo 
categories. Practice and Problems. The Practice exer-
cises help you to get used to ideas in the text. The 
Problems apply these ideas to physical systems, 
thought experiments, and paradoxes.

wheeler ’s first  moral  pr inciple: Never make 
a calculation until you know the answer. Make an 
estimate before every calculation, try a simple physical 
argument (symmetry! invariance! conservation!) be-
fore every derivation, guess the answer to every para-
dox and puzzle. Courage: No one else needs to know 
what the guess is. Therefore make ir quickly, by 
instinct. A right guess reinforces this instinct. A wrong 
guess brings the refreshment of surprise. In eirher case 
life as a spacetime expert, however long, is more fun!

CHAPTE3R 1 EXERCISES

PRACTICE
1-1 co m paring sp eeds
Compare the speeds of an automobile, a jet plane, an 
Earth satellite. Earth in its orbit around Sun, and a 
pulse of light. Do this by comparing the relative 
distance each travels in a fixed time. Arbitrarily 
choose the fixed time to give convenient distances. A 
car driving at the USA speed limit of 65 miles/hour 
(105 kilometers/hour) covers 1 meter of distance in 
about 35 milliseconds =  35 X 10“  ̂ second.

a  How far does a commercial jetliner go in 35 
milliseconds? (speed: 650 miles/hour =  1046 
kilometers/hour)

b  How far does an Earth satellite go in 3 5 milli-
seconds? (speed: 17,000 miles/hour ~  27,350 
kilometers/hour)

C How far does Earth travel in its orbit around 
Sun in 35 milliseconds? (speed: 30 kilometers/se- 
cond)

d  How far does a light pulse go in a vacuum in 
35 milliseconds? (speed: 3 X 10® meters /second). 
This distance is roughly how many times the distance 
from Boston to San Erancisco (5000 kilometers)?

1 -2 im ag es from N eptune
At 9:00 P.M. Pacific Daylight Time on August 24, 
1989, the planetary probe Voyager 11 passed by the 
planet Neptune. Images of the planet were coded and 
rransmitted to Earth by microwave relay.

It took 4 hours and 6 minutes for this microwave 
signal to travel from Neptune to Earth. Microwaves 
(electromagneric radiation, like light, but of fre-
quency lower than that of visible light), when propa-
gating through interplanetary space, move at the 
‘ ‘standard ’ ’ light speed of one meter of distance in one 
meter of light-travel time, or 299,792,458 meters/ 
second. In the following, neglect any relative motion 
among Earth, Neptune, and Voyager 11.

a  Calculate the distance between Earth and 
Neptune at fly-by in units of minutes, seconds, years, 
meters, and kilometers.

b  Calculate the time the microwave signal takes 
to reach Earth. Use the same units as in part a.

1 -3 units of sp ace tim e
Light moves at a speed of 3.0 X 10® meters/second. 
One mile is approximately equal to 1600 meters. 
One furlong is approximately equal to 200 meters.
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a  How many meters of time in one day? 
b  How many seconds of distance in one mile? 
c How many hours of distance in one furlong? 
d  How many weeks of distance in one light-year? 
e  How many furlongs of time in one hour?

1 >4 tim e stre tchin g an d the 
sp ace tim e in te rv a l

A rocket clock emits two flashes of light and the 
rocket observer records the time lapse (in seconds) 
between these two flashes. The laboratory observer 
records the time separation (in seconds) and space 
separation (in light-seconds) between the same pair of 
flashes. The results for both laboratory and rocket 
observers are recorded in the first line of the table.

Now a clock in a different rocket, moving at a 
different speed with respect to the laboratory, emits a 
different pair of flashes. The set of laboratory and 
rocket space and time separations are recorded on the

■<̂ [̂ [e X ERC ISE

SPACE A ND TIME SEPARA TIO NS
Rocket 

time lapse 
(seconds)

Laboratory 
time lapse 
(seconds)

Laboratory
distance

(light-seconds)

Example 20 29 21

a > 10.72 5.95
b 20 99
c 66.8 72.9 p

d ? 8.34 6.58
e 21 22 ?

second line of the table. And so on. Complete the 
table.

1 -5 w here an d w h e n?
Two firecrackers explode at the same place in the 
laboratory and are separated by a time of 3 years as 
measured on a laboratory clock.
a  What is the spatial distance between these two 

events in a rocket in which the events are separated in 
time by 5 years as measured on rocket clocks?

b  What is the relative speed of the rocket and 
laboratory frames?

1 -6 m ap m aking in sp ace
The table shows distances between cities. The units 
are kilometers. Assume all cities lie on the same flat 
plane.

a  Use a ruler and a compass (the kind of compass 
that makes circles) to construct a map of these cities. 
Choose a convenient scale, such as one centimeter on 
the map corresponds to ten kilometers on Earth.

Discussion: How to start? With three arbitrary 
decisions! (1) Choose any city to be at the center of the 
map. (2) Choose any second city to be “due north” 
—  that is, along any arbitrary direction you select. (3) 
Even with these choices, there are two places you can 
locate the third city; choose either of these two places 
arbitrarily.

b  If you rotate the completed map in its own 
plane —  for example, turning it while keeping it flat 
on the table— does the resulting map also satisfy the 
distance entries above?

C Hold up your map between you and a light, 
with the marks on the side of the paper facing rhe

C ^ ^ ^ X E R C I S E  -----

DISTA NCES BET WEEN CITIES
Distance
to city A B C D E F G H

from city
A 0 20.0 28.3 28.3 28.3 20.0 28.3 44.7

B 0 20.0 20.0 44.7 40.0 44.7 40.0

C 0 40.0 40.0 44.7 56.6 60.0
D 0 56.6 44.7 40.0 20.0

E 0 20.0 40.0 72.1

F 0 20.0 56.6

G 0 44.7

H 0
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light. Does the map you see from the back also satisfy 
the table entries?

Discussion: In this exercise you use a table con-
sisting only of distances between pairs of cities to 
construct a map of these cities from the point of view 
of a surveyor using a given direction for north. In 
Exercise 5-3 you use a table consisting only of space- 
time intervals between pairs of events to draw a 
“spacetime map” of these events from the point of 
view of one free-float observer. Exercise 1-7 previews 
this kind of spacetime map.

1 -7 sp ace tim e map
The laboratory space and time measurements of 
events 1 through 5 are plotted in the figure. Compute 
the value of the spacetime interval 

a  between event 1 and event 2. 
b  between event 1 and event 3. 
c between event 1 and event 4. 
d  between event 1 and event 5. 
e  A rocket moves with constant velocity from 

event 1 to event 2. That is, events 1 and 2 occur at the 
same place in this rocket frame. What time lapse is 
recotded on the rocket clock between these two 
events?

t
time

(meters)

event
2

event
4

event '3

event

event
1,

0 1 2 3 4 5 6

----- space (meters) — �

EXERCISE 1 -7 . Spacetime map of some events.

PROBLEMS
1 -8 siz e  off a  com puter
In one second some desktop computers can carry out 
one million instructions in sequence: One instruction 
might be, for instance, multiplying two numbers to-
gether. In technical jargon, such a computer operates 
at “one megaflop.” Assume that carrying out one

instruction requires transmission of data from the 
memory (where data is stored) to the processor (where 
the computation is carried out) and transmission of 
the result back to the memory for storage.

a  What is the maximum average distance be-
tween memory and processor in a “one-megaflop” 
computer? Is this maximum distance increased or 
decreased if the signal travels through conductors at 
one half the speed of light in a vacuum?

b  Computers are now becoming available that 
operate at “one gigaflop,” that is, they carry out 10  ̂
sequential instructions per second. What is the maxi-
mum average distance between memory and proces-
sor in a “one-gigaflop” machine?

c Estimate the overall maximum size of a “one- 
teraflop” machine, that is, a computer that can carry 
out 10*  ̂sequential instructions per second.

d Discussion question: In contrast with most 
current personal computers, a “parallel processing” 
computer contains several or many processors that 
work together on a computing task. One might think 
that a machine with 10,000 processors would com-
plete a given computation task in 1/10,000 the time. 
However, many computational problems cannot be 
divided up in this way, and in any case some fraction 
of the computing capacity must be devoted to coordi-
nating the team of processors. What limits on physi-
cal size does the speed of light impose on a parallel 
processing computer?

1 -9 trips to A ndro m eda b y  
rocket

The Andromeda galaxy is approximately two million 
light-years distant from Earth as measured in the 
Earth-linked frame. Is it possible for you to travel 
from Earth to Andromeda in your lifetime? Sneak up 
on the answer to this question by considering a series 
of trips from Earth to Andromeda, each one faster 
than the one before. For simplicity, assume the Earth- 
Andromeda distance to be exactly two million light- 
years in the Earth frame, treat Earth and Andromeda 
as points, and neglect any relative motion between 
Earth and Andromeda.

a  TRIP 1. Your one-way trip takes a time 2 .01 X 
10^ years (measured in the Earth-linked frame) to 
cover the distance of 2.00 X 10^ light-years. How 
long does the trip last as measured in your rocket 
frame?

b  What is your rocket speed on Trip 1 as mea-
sured in the Earth-linked frame? Express this speed as 
a decimal fraction of the speed of light. Call this 
fraction, p =  where is speed in conven-
tional units, such as meters/second. Discussion: If 
your rocket moves at half the speed of light, it takes
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4 X 10^ years to cover the distance 2 X 10^ light- 
years. In this case

2 X 10^ light-years 

4 X 10^ years

1

Therefore . . .
c TRIP 2. Your one-way Earth-Andromeda trip 

takes 2.001 X 10® years as measured in the Earth- 
linked frame. How long does the trip last as measured 
in your rocket frame? What is your rocket speed for 
Trip 2, expressed as a decimal fraction of the speed of 
light?

d TRIP 3. Now set the rocket time for the one-
way trip to 20 years, which is all the time you want to 
spend getting to Andromeda. In this case, what is 
your speed as a decimal fraction of the speed of light? 
Discussion: Solutions to many exercises in this text 
are simplified by using the following approximation, 
which is the first two terms in the binomial expansion

(1 -b z)” ~  1 + nz l «  1

Here n can be positive or negative, a fraction or an 
integer; z can be positive or negative, as long as its 
magnitude is very much smaller than unity. This 
approximation can be used twice in the solution to 
part d.

1-10 trip  to A ndro m eda by 
Transp orter

In the Star Trek series a so-called Transporter is used 
to “beam” people and their equipment from a star- 
ship to the surface of nearby planets and back. The 
Transporter mechanism is not explained, but it ap-
pears to work only locally. (If it could transport to 
remote locations, why bother with the starship at all?) 
Assume that one thousand years from now a Trans-
porter exists that reduces people and things to data 
(elementary bits of information) and transmits the 
data by light or radio signal to remote locations. There 
a Receiver uses the data to reassemble travelers and 
their equipment out of local raw materials.

One of your descendants, named Samantha, is the 
first “transporternaut” to be beamed from Earth to 
the planet Zircon orbiting a star in the Andromeda 
Nebula, two million light-years from Earth. Neglect 
any relative motion between Earth and Zircon, and 
assume: (1) transmission produces a Samantha iden-
tical to the original in every respect (except that she is 
2 million light-years from home!), and (2) the time 
required for disassembling Samantha on Earth and 
reassembling her on Zircon is negligible as measured

in the common rest frame of Transporter and Re-
ceiver.

a  How much does Samantha age during her 
outward trip to Zircon?

b  Samantha collects samples and makes obser-
vations of the Zirconian civilization for one Earth- 
year, then beams back to Earth. How much has Sa-
mantha aged during her entire trip?

C How much older is Earth and its civilization 
when Samantha returns?

d  Earth has been taken over by a tyrant, who 
wishes to invade Zircon. He sends one warrior and has 
him duplicated into attack battalions at the Receiver 
end. How long will the Earth tyrant have to wait to 
discover whether his ambition has been satisfied?

e  A second transporternaut is beamed to a much 
more remote galaxy that is moving away from Earth 
at 87 percent of the speed of light. This time, too, the 
traveler stays in the remote galaxy for one year as 
measured by clocks moving with the galaxy before re-
turning to Earth by Transporter. How much has the 
transporternaut aged when she arrives back at Earth? 
(Careful!)

1-11 t im e stre tching wi th 
muons

At heights of 10 to 60 kilometers above Earth, cosmic 
rays continually strike nuclei of oxygen and nitrogen 
atoms and produce muons (muons: elementary parti-
cles of mass equal to 207 electron masses produced in 
some nuclear reactions). Some of the muons move 
vertically downward with a speed nearly that of light. 
Follow one of the muons on its way down. In a given 
sample of muons, half of them decay to other ele-
mentary particles in 1.5 microseconds (1.5 X 10~® 
seconds), measured with respect to a reference frame 
in which they are at rest. Half of the remainder decay 
in the next 1.5 microseconds, and so on. Analyze the 
results of this decay as observed in two different 
frames. Idealize the rather complicated acmal experi-
ment to the following roughly equivalent situation: 
All the muons are produced at the same height (60 
kilometers); all have the same speed; all travel straight 
down; none are lost to collisions with air molecules on 
the way down.

a  Approximately how long a time will it take 
these muons to reach the surface of Earth, as mea-
sured in the Earth frame?

b  If the decay time were the same for Earth 
observers as for an observer traveling with the muons, 
approximately how many half-lives would have 
passed? Therefore what fraction of those created at a 
height of 60 kilometers would remain when they
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reached sea level on Earth? You may express your 
answer as a power of the fraction 1/2.

c An experiment determines that the fraction 
1 /8  of the muons reaches sea level. Call the rest frame 
of the muons the rocket frame. In this rocket frame, 
how many half-lives have passed between creation of 
a given muon and its arrival as a survivor at sea level?

d In the rocket frame, what is the space separation 
between birth of a survivor muon and its arrival at the 
surface of Earth? (Careful!)

e  From the rocket space and time separations, 
find the value of the spacetime interval between the 
birth event and the arrival event for a single surviving 
muon.
Reference: Nalini Easwar and Douglas A. Macintire, American Jour-
nal of Physics, Volume 59, pages 5 8 9 -5 9 2  (July 1991).

1-12 tim e stre tchin g w ith 
TT^-mesons

Laboratory experiments on particle decay are much 
more conveniently done with TT^-mesons (pi-plus 
mesons) than with //-mesons, as is seen in the table.

In a given sample of TT^-mesons half will decay to 
other elementary particles in 18 nanoseconds (18 X 
10“^ seconds) measured in a reference frame in which 
the TT^-mesons are at rest. Half of the remainder will 
decay in the next 18 nanoseconds, and so on.

a  In a particle accelerator TT^-mesons are pro-
duced when a proton beam strikes an aluminum

TIME STRETCHIN G WITH 7T + -MES0 NS
"Characteristic distance”

Time for half to (speed of light
decay (measured multiplied by

Particle in rest frame) foregoing time)

muon 1.5 X 10"^ second 450 meters
(207 times 
electron mass) 
TT̂ -meson 
(273 times 
electron mass)

18 X 10“* second 5.4 meters

target inside the accelerator. Mesons leave this target 
with nearly the speed of light. If there were no time 
stretching and if no mesons were removed from the 
resulting beam by collisions, what would be the 
greatest distance from the target at which half of 
the mesons would remain undecayed?

b  The TT^-mesons of interest in a particular ex-
periment have a speed 0.9978 that of light. By what 
factor is the predicted distance from the target for 
half-decay increased by time dilation over the 
previous prediction —  that is, by what factor does this 
dilation effect allow one to increase the separation 
between the detecting equipment and target?
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FLOATING FREE
A t that moment there came to me the happiest 

thought of my life . . . for an observer falling freely 
from the roof of a house no gravitational field exists 
during his fa ll . . .

A l b e r t  Einst e in

2.1 FLOATING TO M OON
w ill the astro n au t stan d on the f lo o r— or f lo a t?

Less than a month after the surrender at Appomattox ended the American Civil War 
(1861-1865), theFrenchauthorJulesV erne began writing A Trip From the Earth to 
the Moon and A Trip Around the Moon. Eminent American cannon designers, so the 
story goes, cast a great cannon in a pit, with cannon muzzle pointing skyward. From 
this cannon they fire a ten-ton projectile containing three men and several animals 
(Figure 2-1).

As the projectile coasts outward in unpowered flight toward Moon, Verne says, irs 
passengers walk normally inside the projectile on the end nearer Earth (Figure 2-2). As 
the trip continues, passengers find themselves pressed less and less against the floor of 
the spaceship until finally, at the point where Earth and Moon exert equal but opposite 
gravitational attraction, passengers float free of the floor. Later, as the ship nears 
Moon, they walk around once again —  according to Verne —  but now against the end 
of the spaceship nearer Moon.

Early in the coasting portion of the trip a dog on the ship dies from injuries susrained 
at takeoff. Passengers dispose of its remains through a door in the spaceship, only to 
find the body floating outside the window during the entire trip (Figure 2-1).

This story leads to a paradox whose resolution is of crucial importance to relativity. 
Verne thought it reasonable that Earth’s gravitational attraction would keep a passen-
ger pressed against the Earth end of the spaceship during the early part of the trip. He 
also thought it reasonable rhat the dog should remain next to the ship, since both ship 
and dog independently follow the same path through space. But since the dog floats 
outside the spaceship during the entire trip, why doesn’t the passenger float around 
inside the spaceship? If the ship were sawed in half would the passenger, now 
"outside,” float free of the floor?

Ju les V e r n e :
P a sse n g e r  st a n d s o n f lo o r

P a r a d o x  o f p a sse n g e r  a n d  d o g

2 5
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AN INCORRECT PREDICTIO N

> TIIK m>l)Y OK SATKI.I.ITE.

F IG U RE 2 - 1 .  I l lu s t r a t io n  f r o m  a n  
e a r ly  e d i t io n  o f  K  T r i p  A r o u n d  t h e  
M o o n .  Satellite  is the name o f  the unfor-
tu n a te  dog.

Po int of equal 
gravitational ^  
attrart ion A

THE C ORRECT PREDICTIO N

F IG U RE 2 - 2 .  In c o rr e c t p r e d ic t io n :  Ju le s  Verne believed th a t a  passenger inside a  free projectile would  
s ta n d  aga inst the end o f  the projectile nearest E arth  or Moon, w hichever h a d  greater g ra v ita tio n a l  
a ttraction  —  h u t th a t the dog w ould  jio a t along beside the projectile fo r  the entire trip . C o rre c t p r e d ic t io n :  
Verne w as r igh t about the dog, bu t a  passenger also flo a ts  w ith  respect to the free  projectile d uring  the entire  
trip .

Reality;
P a s s e n g e r  f l o a t s  in  s p a c e s h i p

Our experience with actual space flights enables us to resolve this paradox (Figure
2-2). Jules Verne was wrong about the passenger’s motion inside the unpowered 
spaceship. Like the dog outside, the passenger inside independently follows the same 
path through space as the spaceship itself. Therefore he floats freely relative to the ship 
during the entire trip (after the initial boost inside the cannon barrel). True: Earth’s 
gravity acts on the passenger. But it also acts on the spaceship. In fact, with respect to 
Earth, gravitational acceleration of the spaceship just equals gravitational acceleration 
of the passenger. Because of this equality, there is no relative acceleration between 
passenger and spaceship. Thus the spaceship serves as a reference fram e relative to 
which the passenger does not experience any acceleration.

To say that acceleration of the passenger relative to the unpowered spaceship equals 
zero is not to say that his velocity relative to it necessarily also equals zero. He may jump 
from the floor or spring from the side— in which case he hurtles across the spaceship 
and strikes the opposite wall. However, when he floats with zero initial velocity 
relative to the ship the situation is particularly interesting, for he will also float with 
zero velocity relative to it at all later times. He and the ship follow identical paths 
through space. How remarkable that the passenger, who cannot see outside, never-
theless moves on this deterministic orbit! Without a way to control his motion and 
even with his eyes closed he will not touch the wall. How could one do better at 
eliminating detectable gravitational influences?

2.2 THE INERTIAL (FREE-FLOAT) FRAME
goodbye to the " f o rce of g ra v i t y "

It is easy to talk about the simplicity of motion in a spaceship. It is hard to think of 
conditions being equally simple on the surface of Earth (Figure 2-3). The reason for
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re c o v e ry
a p p a ra t us

re le ase
a p p a r a t us

c a psu le

m e c h a n ica l
b ra k in g

sh ock-

re le ase  m ec h a n ism  

thrust er n o z z le

� thruster g as tanks

in n er cy l in d e r  
re le ase  m ec h a n ism

� in n e r cy l in d e r  
for e x p erim e n ts

sh o c k a b so r b e rs

d a t a  transm issio n  
a n d  b a t t er ies

F IG U RE 2 - 3 .  T h e  J a p a n  M ic r o g r a v i ty  C e n te r  ( J A M I C )  i n s ta l l e d  i n  a n  a b a n d o n e d  c o a l m in e  
7 1 0  m e te r s  d e e p  in  th e  s m a l l  to w n  o f  K a m is u n a g a w a  on  th e  n o r th e r n  i s la n d  o f  H o k k a id o ,  

J a p a n .  The capsule carrying the experim ental apparatus provides a  free-float fra m e  fo r  10  seconds as i t  fa lls  
4 9 0  meters through a  vertica l tube, achieving a  m axim um  velocity o f  nearly 1 0 0  m etersj second. I t  is  g u ided  
by tw o contact-free m agnetic suspensions along the tube. The vertica l tube is  not evacuated; dow nw ard-  
th rusting  gas je ts  on the capsule compensate fo r  a ir  drag as the capsule drops. The capsule is slowed down in  
an  a d d itio n a l distance o f 2 0 0  meters near the bottom o f  the tube by a ir  resistance a fter  thrusters are turned  
off, fo llow ed by m echanical braking. T w en ty  meters o f  cushioning m a ter ia l a t  the very bottom o f  the tube 
provide emergency stopping. The fa l l in g  capsule is  nearly 8  meters long a n d  nearly 2  meters in  d iam eter w ith  
a  mass o f  5 0 0 0  kilograms, includ ing  1 0 0 0  kilogram s o f  experim ental equipm ent contained in  an  inner  
cylinder 1 .3  meters in  d iam eter a n d  1 .8  meters long. The space between capsule a n d  experim ental cylinder is 
evacuated. The inner experim ental cylinder is released ju s t  before the outer capsule itself. O ptical m onitoring  
o f  the vertica l position o f  the inner cylinder triggers dow nw ard-push ing  thrusters as needed to overcome a ir  
resistance. T h u s the experim ental cylinder i ts e lf  acts as an  in terna l “conscience," ensuring th a t the capsule 
takes the same course th a t i t  w ould  have taken  h a d  both resistance a n d  thrust been absent. The result? A  
nearly free-float fram e , w ith  a  m axim um  acceleration o f  1 .0  54 10~^ g  in  the experim ental capsule, where 
g is  the acceleration o f  g ra v ity  a t  E a rth ’s surface. Experim ents carried out in  th is  fa c i l i ty  benefit from  
conditions o f  “no a ir  pressure, no heat convection, no flo a tin g  or s in k in g  buoyancy, no resistance to m otion ,"  
as w ell as m uch lower cost a n d  less environm ental dam age than  those involved in  launch ing  a n d  m onitoring  
an E arth  sa tellite. The fa c i l i ty  is designed to carry out 4 0 0  drops per year, w ith  experiments such as fo rm ing  
large superconducting crystals, creating alloys o f  m aterials th a t do not normally m ix , stu d y in g  transitions  
between gas a n d  l iq u id  phases, a n d  burning  under zero-g. (See also Figure 9 -2 .)
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F IG U RE 2 - 4 .  I l lu s io n  a n d  R e a l i ty ,  The same ba ll thrown from  the same com er o f  the same room in  the 
same direction w ith  the same speed is seen to undergo very d ifferent motions depending on whether i t  is 
recorded by a n  observer w ith  a  floor push ing  up aga inst h is fe e t or by an  observer in  “free  f a l l "  ( “free f lo a t”) 
in  a  house saw ed free from  the cliff. In  both descriptions the ba ll arrives a t  the same p lace— rela tive to 
M other E a rth — a t the same in stan t. Let each ba ll squ ir t a  je t  o f  in k  on the w a ll we are looking a t. The 
resulting record is as crisp fo r  the arc as fo r  the stra igh t line. Is the arc real a n d  the stra igh t line  illusion? Or 
is the stra igh t line real a n d  the arc illusion? E instein  tells us th a t the two in k  tra ils  are equally va lid . W e 
have only to be honest a n d  say whether the house, the w all, a n d  the describes o f  the motion are in  free flo a t or 
whether the describer is continually being driven  aw a y  from  a  condition o f  free flo a t by a  push  aga inst his  
fee t. E instein also tells us th a t physics a lw ays looks simplest in  a  free-float fram e . F inally, he tells us th a t  
every tru ly  local m anifesta tion  o f  “g ra v ity "  can be elim ina ted  by observing motion from  a  fra m e  o f  reference 
th a t is in  free  floa t.

C o n c e p t  o f  f r e e - f lo a t  f ra m e

concern is not far to seek. We experience it every day, every minute, every second. We 
call it gravity. It shows in the arc of a ball tossed across the room (Figure 2-4, left). 
How can anyone confront a mathematical curve like that arc and not be trapped again 
in that tortuous trail of thought that led from ancient Greeks to Galileo to Newton? 
They thought of gravity as a force acting through space, as something mysterious, as 
something that had to be “explained.”

Einstein put forward a revolutionary new idea. Eliminate gravity!
Where lies the cause of the curved path of the ball? Is it the ball? Is it some 

mysterious “force of gravity”? Neither, Einstein tells us. It is the fault of the viewers 
— and the fault of the floor that forces us away from the natural state of motion: the 
state of free fall, or better put, free float. Remove the floor and our motion 
immediately becomes natural, effortless, free from gravitational effects.

Let the room be cut loose at the moment we throw the ball slantwise upward from 
rhe west side at floor level (Figure 2-4, right). The ball has the same motion as it did 
before. However, the motion looks different. It looks different because we who look at 
it are in a different frame of reference. We are in a free-float fram e. In this free-float 
frame the ball has straight-line motion. What could be simpler?

Even when the room was not cut away from the cliff, the floor did not affect the 
midair flight of the ball. But the floor did affect us who watched the flight. The floor 
forced us away from our natural motion, the motion of free fall (free float). We 
blamed the curved path of the ball on the “force of gravity” acting on the ball. Instead 
we should have blamed the floor for its force acting on us. Better yet, get rid of the floor 
by cutting the house away from the cliff. Then our point of view becomes the natural 
one: We enter a free-float frame. In our free-float frame the ball flies straight.
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What’s the fault of the force on my feet? 
What pushes my feet down on the floor? 
Says Newton, the fa u lt’s at Earth’s core. 
Einstein says, the fa u lt’s with the floor; 
Remove that and gravity’s beat!

—  Frances Towne Ruml

How could humankind have lived so many centuries without realizing that the 
“arc” is an unnecessary distraction, that the idea of local “gravity” is superfluous — 
the fault of the observer for not arranging to look at matters from a condition of free 
float?

Even today we recoil instinctively from the experience of free float. We and a 
companion ride in the falling room, which does not crash on the ground but drops into 
a long vertical tunnel dug for that purpose along the north-south axis of Earth. Our 
companion is so filled with consternation that he takes no interest in our experimental 
findings about free float. He grips the door jamb in terror. “W e’re falling!” he cries 
out. His fear turns to astonishment when we tell him not to worry.

“A shaft has been sunk through Earth,” we tell him. “ It’s not the fall that hurts 
anyone but what stops the fall. All obstacles have been removed from our way, 
including air. Free fall,” we assure him, “is the safest condition there is. That’s why we 
call it free float.”

“You may call it float,” he says, “but I still call it fall.”
“Right now that way of speaking may seem reasonable,” we reply, “but after we 

pass the center of Earth and start approaching the opposite surface, won’t the word 
‘fair seem rather out of place? Might you not then prefer the word ‘float’?” And with 
“ float” our companion at last is happy.

What do we both see? Weightlessness. Free float. Motion in a straight line and at 
uniform speed for marbles, pennies, keys, and balls in free motion in any direction 
within our traveling home. No jolts. No shudders. No shakes at any point in all the 
long journey from one side of Earth to the other.

For our ancestors, travel into space was a dream beyond realization. Equally beyond 
our reach today is the dream of a house floating along a tunnel through Earth, but this 
dream nonetheless illuminates the simplicity of motion in a free-float frame. Given the 
necessary conditions, nothing that we observe inside our traveling room gives us the 
slightest possibility of discriminating among different free-float frames: one just above 
Earth’s surface, a second passing through Earth’s interior, a third in the uttermost 
reaches of space. Floating inside any of them we find no evidence whatever for the 
presence of “gravity.”

F r e e - f l o a t  t h ro u g h Ear t h

W a i t  a  m in u te !  I f  th e  id e a  o f  lo ca l “g r a v i t y ” is  u nnecessary , w h y  does m y  p e n c i l  beg in  

to f a l l  w h e n  I  h o ld  i t  in  th e  a i r  a n d  le t  go ?  I f  there  is  no g r a v i ty ,  m y  p e n c i l  sh o u ld  re m a in  

a t  rest.

And so it does remain at test —  as observed from a free-float frame! The natural 
motion of your pencil is to remain at rest or to move with constant velocity in a 
free-float frame. So it is not helpful to ask: “Why does the pencil begin to fall when I 
let go? ” A more helpful question: “Before I let go, why must I apply an upward force 
to keep the pencil at rest?” Answer: Because you are making observations from an 
unnatural frame: one held fixed at the surface of Earth. Remove that fixed hold by 
dropping your room off a cliff. Then for you “gravity” disappears. For you, no force 
is required to keep the pencil at rest in your free-float frame.
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E a r t h ’s pull n o n u n if o rm : 
La r g e  sp a c e sh i p  

n o t a  f r e e - f lo a t  f r a m e

2.3 LOCAL CHARACTER OF FREE-FLOAT 
FRAME

t id a l e f fects in tru d e in la rg e r d o m ains

First to strike us about the concept free float has been its paradoxical character. As a 
first step to explaining gravity Einstein got rid of gravity. There is no evidence of 
gravity in the freely falling house.

Well, almost no evidence. The second feature of free float is its local character. 
Riding in a very small spaceship (Figure 2-5, left) we find no evidence of gravity. But 
the enclosure in which we ride— falling near Earth or plunging through Earth — 
cannot be too large or fall for too long a time without some unavoidable relative 
changes in motion being detected between particles in the enclosure. Why? Because 
widely separated particles within a large enclosed space are differently affected by the 
nonuniform gravitational field of Earth, to use the Newtonian way of speaking. For 
example, two particles released side by side are both attracted toward the center of 
Earth, so they move closer together as measured inside a falling long narrow horizontal 
railway coach (Figure 2-5, center). This has nothing to do with “gravitational attrac-
tion’’ between the particles, which is entirely negligible.

As another example, think of two particles released far apart vertically but directly 
above one another in a long narrow vertical falling railway coach (Figure 2-5, right). 
This time their gravitational accelerations toward Earth are in the same direction.

F IG U RE 2 - 5 .  T h r e e  v e h ic le s  i n  f r e e  f a l l  n e a r  E a r th :  s m a l l  sp a ce  c a p su le , E in s t e in ’s  o ld - fa -
s h io n e d  r a i lw a y  coach in  f r e e  f a l l  in  a  h o r i z o n t a l  o r ie n ta t io n , a n d  a n o th e r  r a i l w a y  coach  in  
v e r t i c a l  o r ie n ta tio n .
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according to the Newtonian analysis. However, the particle nearer Earth is more 
strongly attracted to Earth and slowly leaves the other behind: the two particles move 
farther apart as the coach falls. Conclusion: the latge enclosure is not a free-float frame.

Even a small room fails to qualify as free-float when we sample it over a long 
enough time. In the 42 minutes it takes our small room to fall through the tunnel from 
North Pole to South Pole, we notice relative motion between test particles teleased 
initially from rest at opposite sides of the room.

Now, we want the laws of motion to look simple in our floating room. Therefore we 
want to eliminate all relative accelerations produced by external causes. “Eliminate” 
means to reduce these accelerations below the limit of detection so that they do not 
interfere with more important accelerations we wish to study, such as those produced 
when two particles collide. We eliminate the problem by choosing a room that is 
sufficiently small. Smaller room? Smaller relative accelerations of objects at different 
points in the room!

Let someone have instruments for detection of relative accelerations with any given 
degree of sensitivity. No matter how fine that sensitivity, the room can always be made 
so small that these perturbing relative accelerations ate too small to be detectable. 
Within these limits of sensitivity our room is a free-float frame. “Official” names for 
such a frame are the inertia l reference fram e and the Lorentz reference fram e. 
Here, however, we often use the name free-float fram e, which we find more 
descriptive. These are all names for the same thing.

A reference frame is said to be an “inertial” or “free-float” or “Lorentz” 
reference frame in a certain region of space and time when, throughout that 
region of spacetime — and within some specified accuracy — every free test 
particle initially at rest with respect to that frame remains at rest, and every 
free test particle initially in motion with respect to that frame continues its 
motion without change in speed or in direction.

Wonder of wonders! This test can be carried out entirely within the free-float frame. 
The observer need not look out of the room or refer to any measurements made 
external to the room. A free-float frame is “local” in the sense that it is limited in space 
and time —  and also ‘ ‘ local ’ ’ in the sense that its free-float character can be determined 
from within, locally.

Sir Isaac Newton stated his First Law of Motion this way: “Every body perseveres in 
its state of rest, or of uniform motion in a right [straight} line, unless it is compelled to 
change that state by forces impressed upon it.” For Newron, inertia  was a property of 
objects that described their tendency to maintain their state of motion, whether of rest 
or constant velocity. For him, objects obeyed the “Law of Inertia.” Here we have 
turned the “Law of Inertia” around: Before we certify a reference frame to be inertial, 
we require observers in that frame to demonstrate that every free particle maintains its 
initial state of motion or rest. Then Newton’s First Law of Motion defines a reference 
frame— an arena or playing field —  in which one can study the motion of objects and 
draft the laws of their motion.

F r e e - f l o a t  f r a m e is l o c a l

F r e e - f l o a t  (in e r t ia l) f r a m e  
f o r m a l ly  d e f in e d

W h e n  is  th e  room, th e  sp a cesh ip , o r a n y  o th e r  veh ic le  s m a ll  eno u g h  to  be c a lle d  a  lo ca l 

fr e e - f lo a t  f r a m e ?  O r w h e n  is  th e  re la tiv e  acce lera tio n  o f  tw o  fr e e  p a r t ic le s  p la c e d  a t  

opposite en d s  o f  th e  veh ic le  too s l ig h t  to  he d e tec ted ?

“Local” is a tricky word. For example, drop the old-fashioned 20-meter-long 
railway coach in a horizontal orientation from rest at a height of 315 meters onto the 
surface of Earth (Figure 2-5, center). Time from release to impact equals 8 seconds, 
or 2400 million meters of light-travel time. At the same instant you drop the coach, 
release tiny ball bearings from rest —  and in midair —  at opposite ends of the coach.



THE TIDE-DRIVING PO WER 
OF M O O N  A N D SUN

N o t e ;  N e i t h e r  a s t r o n o m e r s  n o r  n e w s p a p e r s  s a y  “ t h e  V e n u s ”  o r  “ t h e  M a r s . "  A l l  

s a y  s i m p l y  “ V e n u s "  o r  “ M a r s . "  Astronomers f o l l o w  t h e  s a m e  s n a p p y  p r a c t i c e  

f o r  E a r t h ,  M oon , a n d  S u n . M ore a n d  m o r e  o f  t h e  r e s t  o f  t h e  w o r l d  n o w  f o l l o w s  —  
os do w e  in  t h is b o o k  —  t h e  r e c o m m e n d a t i o n s  o f  t h e  I n t e r n a t i o n a l  A s t r o n o m i c a l  

U n i o n .

The o c e a n ’s rise a n d fall in a never-en d in g rhythmic cyc le  b e a rs w it ness to 
the t ide-driv ing p o w er o f M oon an d Sun. In princip le th ose in fluences a re  no 
dif ferent from th ose that c a use rela t ive motion o f f ree p ar t ic les in the vicinity 
of Earth . In a  f ree- f lo a t fram e n e ar Earth , p ar t ic les se p a ra t e d  ver t ically i n �

c r e a s e  their se p ara t io n with time; p ar t ic les se p a ra t e d  h orizon ta lly d ecrease 
their se p ara t io n with time (Figure 2-5). M ore g e n era lly , a  thin spa t t erin g o f 
f ree- f lo a t test m asses, sp herica l in pat tern , g ra d u a lly b eco m es e g g -sh a p e d , 
with the long a x is ver t ical. Test m asses n e a re r Earth , more strongly a t t rac te d  
than the a v e ra g e , move d o w n w ard to form the lo w er bu lge . Similarly , test 
masses farther from Earth, less strongly attracted than the avera g e , lag be �
hind to form the upper bulge.

By like act ion M o on , act in g on the w a t e rs o f Earth —  f loating f ree in sp a c e  
—  would d ra w  them out into an e g g -sh a p e d  pat tern if there w ere w a t e r 
e v ery w h ere , w a t e r o f uniform de p th . There isn ’t. The narro w Straits o f G i �
b ra lt ar almost cut off the M e d i t e rra n ea n from the op en o ce a n , an d alm ost kill 
all t ides in it. Th ere fo re it is no w o n d er that G a l i l e o  G a li le i , al though a  g re a t  
p io n eer in the study o f gravi ty , did not ta k e the t ides as serio usly as the more 
w id e ly t ra ve le d Jo h an n es K e p le r , an e x p er t  on the motion o f M oon an d the 
p lane ts. O f  Ke p le r , G a l i l e o  ev en sa id , “ M ore than o ther p e o p le he w as a  
p erso n o f in d e p en d en t genius . . . [but he] la t er p ricke d up his e a rs an d  
b eca m e in terested in the act ion o f the moon on the w a t e r , an d in o ther occult 
p hen o m ena , an d similar ch ild ish n ess. ’ ’

Fo o lishness in d e e d , it must h ave see m e d , to assig n to the tiny t id es o f the 
M e d i t e rra n ea n an e x p lana t io n so cosmic as M o on . But m ariners in northern 
w a t e rs f a ce destruct ion unless they track the t id es. For g o o d re aso n they 
re m em ber that M o on r e a c h es its summit o v e rh e a d  an a v e ra g e  5 0 . 4 7  minutes 
la te r each d a y . Their own bit ter e x p e rie n ce tells them that , o f the two high 
t ides a d a y  —  t w o  b e ca use there a re  two pro ject io ns on an e g g —  e a ch a lso  
co m es ab o u t 5 0 minutes la ter than it did the d a y  b e fo re .

G e o g ra p h y  m akes M e d i t e rra n ea n t id es minuscule. G e o g ra p h y  a lso  
m akes t ides in the Gu lf  o f M ain e an d B ay o f Fundy the highest in the w orld . 
H ow co m e? Reso nance! The B ay o f Fundy an d the Gulf o f M a in e m ake 
t o g e th er a  g r e a t  bathtub in which w a t e r slosh es b ac k an d forth with a natural 
p erio d o f 13 hours, n e ar to the 12 .4-h o ur timing o f M o o n ’s t ide-driving 
p o w er —  an d to the 12-hour timing o f Sun’s inf luence. Build a  big p o w er- 
prod ucin g dam in the u p per r e a c h es o f the Bay o f Fundy? Shorten the length 
of the ba th tu b? D e cre ase  the slosh time from 13 hours to e x a c t  reso n a n ce  
with M o o n? Then ge t o ne- fo o t higher t ides alo n g the M ain e coast!

W a n t to se e  the highest t id es in the Bay o f Fundy? Then ch o ose your visit 
a ccord in g to t h ese rules: (1) Co m e in summer, w hen this northern b o d y of 
w a t e r tilts most strongly t o w ard M oon . (2) Co m e when M oon , in its ellipt ic 
orbit , is c losest to Earth —  roughly 10 p ercen t c l oser than its most distant 
point , y ie ld in g roughly 35 p ercen t g re a t e r t id e-pro d ucin g p o w er . (3) Take 
into account the t id e-pro d ucin g p o w er o f Sun, aksout 45 p ercen t as g re a t  as 
that o f M oon . Sun’s e f fect re in forces M o o n ’s inf luence when M oon is dark , 
d ark b e ca use in t erp ose d , or alm ost in t erp ose d , b e t w een Earth an d Sun, so 
Sun a n d M oon pull from the sa m e sid e . But an eg g has two pro ject io ns, so Sun 
an d M oon a lso  assist  e a ch o ther in prod ucin g t id es when they a r e  on o p p o �
site sid es o f Earth; in this c ase  w e se e a  full M oon .



The result? Burncoa t H e a d  in the M in as Basin , N o v a Sco t ia , h as the g re a t �
est mean ra n g e o f 14 .5 meters (47 .5 feet) b e t w een low an d high t ide when 
Sun a n d M oon line up. A t n e a rb y Lea f Basin , a  unique v alue o f 16 .6 meters 
(54 .5 feet) w as re cord e d in 1953 .

High an d low t ides w itness to the rela t ive a c c e le ra t io ns o f port ions o f the 
o ce a n se p a ra t e d  b y the dia m e ter o f Earth . High t ides sh o w the “ stre tchin g ” 
rela t ive acce le ra t io n a t dif ferent ra d ia l d ist an ces from M o on or Sun. Low 
t ides w itness to the “ sq u e e z in g ” re la t ive a c c e le ra t io ns a t the sa m e rad ia l 
dista nce from M oon or Sun but a t o p p osit e sid es o f Earth.
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During the time of fall, they move toward each other a distance of 1 millimeter— a 
thousandth of a meter, the thickness of 16 pages of this book. Why do they move 
toward one another? Not because of the gravitational attraction between the ball 
bearings; this is far too minute to bring about any “coming together.” Rather, 
according to Newton’s nonlocal view, they are both attracted toward the centet of 
Earth. Their relative motion results from the difference in direction of Earth’s 
gravitational pull on them, says Newton.

As another example, drop the same antique railway coach from rest in a vertical 
orientation, with the lower end of the coach initially 315 meters from the surface of 
Earth (Figure 2-5, right). Again release tiny ball bearings from rest at opposite ends 
of the coach. In this case, during the time of fall, the ball bearings move apart by a 
distance of 2 millimetets because of the greater gravitational acceleration of the one 
neater Earth, as Newton would put it. This is twice the change that occurs for 
horizontal separation.

In either of these examples let the measuring equipment in use in the coach be just 
shott of the sensitivity required ro derect this relative motion of the ball bearings. 
Then, with a limited time of observation of 8 seconds, the railway coach— or, to use 
the earlier example, the freely falling room— serves as a free-float frame.

When the sensitivity of measuring equipment is increased, the railway coach may 
no longer serve as a local free-floar frame unless we make additional changes. Eithet 
shorten the 20-meter domain in which observations are made, or decrease the time 
given to the observations. Or better, cut down some appropriate combination of 
space and time dimensions of the region under observation. Or as a final alrernative, 
shoot the whole apparatus by rocket up to a region of space where one cannor detect 
locally the “differential gravitational acceleration” between one side of the coach and 
another— ro use Newton’s way of speaking. In another way of speaking, relative 
accelerations of particles in different parts of the coach must be too small to perceive. 
Only when these relative accelerations are too small to detect do we have a reference 
frame wirh respect to which laws of motion are simple. Thar’s why “local” is a tricky 
word!

Hold on! You just finished saying that the idea of local gravity is unnecessary. Yet here 
you use the “differential gravitational acceleration" to account for relative accelera-
tions of test particles and ocean tides near Earth. Is local gravity necessary or not?

Near Earth, two explanations of projectile paths or ocean flow give essentially the 
same numerical resulrs. Newron says there is a force of gravity, to be treated like any 
other force in analyzing motion. Einstein says gravity differs from all orher forces; 
Get rid of gravity locally by climbing into a free-float frame. Near the surface of 
Earth both explanations accurately predict relative accelerations of falling particles 
toward or away from one another and motions of the tides. In this chapter we use the 
more familiar Newtonian analysis to predict relative accelerations.

When tests of gravity are very sensitive, or when gravitational effects are large, 
such as near whire dwarfs or neutron stars, then Einstein’s predictions are not the 
same as Newton’s. In such cases Einstein’s battle-tested 1915 theory of gravity 
(genetal relativity) ptedicts results that are observed; Newton’s theory makes incor-
rect predictions. This justifies Einstein’s insistence on getting rid of gravity locally 
using free-float frames. All rhat remains of gravity is the relative accelerations of 
nearby particles — tidal accelerations.

2.4 REGIONS OF SPACETIME
sp ec ia l re la t iv i t y  is lim ited to free- f lo a t fra m es

“Region of spacetime.” What is the precise meaning of this term? The long narrow 
railway coach in Figure 2-5 probes spacetime for a limited stretch of time and in one or 
another single direction in space. It can be oriented north-south or east-west or
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up-dow n. Whatever its orientation, relative acceleration of the tiny ball bearings 
released at the two ends can be measured. For all three directions —  and for all 
intermediate directions —  let it be found by calculation that the telative drift of two 
test particles equals half the minimum detectable amount or less. Then throughout a 
cube of space 20 meters on an edge and for a lapse of time of 8 seconds (2400 million 
meters of light-travel time), test particles moving every which way depart from 
straighr-line motion by undetectable amounts. In other words, the reference frame is 
free-float in a local region of spacetime with dimensions

(20 meters X 20 meters X 20 meters of space) X 2400 million meters of time

Notice that this “tegion of spacetime” is four-dimensional: three dimensions of space 
and one of time.

“ R e g io n  o f sp a c e t i m e ”  is 
f o u r - d i m e nsio n a l

W h y  p a y  so m u c h  a t te n t io n  to th e  s m a ll  r e la tiv e  a cce lera tio n s  d escr ib ed  a b o ve?  W h y  no t 

fr o m  th e  b e g in n in g  c o n s id er a s  reference fr a m e s  on ly  sp a cesh ip s very  f a r  fr o m  E a r th , f a r  

fr o m  o u r  S u n , a n d  f a r  fr o m  a n y  o th er g r a v i ta t i n g  bo d y?  A t  these d is ta n c e s  w e  n eed  n o t 

w o rry  a t  a l l  a b o u t a n y  re la tiv e  acce lera tio n  d u e  to  a  n o n u n ifo rm  g r a v i ta t io n a l  f ie ld ,  

a n d  a  f r e e - f lo a t  f r a m e  c a n  he h u g e  w i th o u t  w o rry in g  a b o u t re la tiv e  a cce lera tio n s  o f  

p a r t ic le s  a t  th e  e x tr e m it ie s  o f  th e  f r a m e . W h y  n o t s tu d y  sp e c ia l  r e la t i v i t y  i n  these rem ote  

reg ions o f  space?

Most of our experiments are carried out near Earth and almost all in our part of the 
solar system. Near Earth or Sun we cannot eliminate relative accelerations of test 
particles due to nonuniformity of gravitational fields. So we need to know how large 
a region of spacetime our experiment can occupy and still follow the simple laws that 
apply in free-float frames.

For some experiments local free-float frames are not adequate. For example, a 
comet sweeps in from remote distances, swings close to Sun, and returns to deep space. 
(Consider only the head of the comet, not its 100-million-kilometer-long tail.) 
Particles traveling near the comet during all rhose years move closer together or farther 
apart due to tidal forces from Sun (assuming we can neglect effects of the gravitational 
field of the comet itself). These relative forces are called tidal, because similat 
differential forces from Sun and Moon act on the ocean on opposite sides of Earth to 
cause tides (Box 2 -1). A frame large enough to include these particles is not free-float. 
So reduce spatial size until relative motion of encompassed particles is undetectable 
duting that time. The resulting frame is very much smaller than the head of the comet! 
You cannot analyze the motion of a comet in a frame smaller than the comet. So 
instead think of a larger free-float frame that surrounds the comet for a limited time 
during its orbit, so that the comet passes thtough a series of such frames. Or think of a 
whole collection of free-float frames plunging radially toward Sun, through which the 
comet passes in sequence. In either case, motion of the comet over a small portion of its 
trajectory can be analyzed rigorously with respect to one of these local free-float frames 
using special relativity. However, questions about the entire rrajectory cannot be 
answered using only one free-float frame; for this we require a series of frames. General 
relativity —  the theory of gravitation —  tells how to describe and predict orbits that 
traverse a string of adjacent free-float frames. Only general relativity can describe 
motion in unlimited regions of spacetime.

W h e n  is g e n e r a l  r e la t iv i t y  
r e q u i r e d ?

P lease stop  h e a t in g  a r o u n d  th e  h u s h !  In  d e f in in g  a  fr e e - f lo a t  f r a m e ,  y o u  s a y  t h a t  every  

te s t  p a r t ic le  a t  rest in  such  a  f r a m e  re m a in s  a t  rest “w i th in  som e sp e c ifie d  a c c u r a c y .” 

W h a t  a ccu ra c y ?  C a n 't  y o u  he m ore sp ec ific?  W h y  do  these d e fin it io n s  d e p e n d  on 

w h e th e r  or n o t w e  a re  a b le  to  perce ive  th e  t i n y  m o tio n  o f  som e te s t  p a r t ic le ?  M y  eyesig h t 

g e ts  worse. O r I  ta k e  m y  g la sses off. D oes th e  w o r ld  su d d e n ly  change , a lo n g  w i th  the  

s ta n d a r d s  f o r  “in e r t ia l  f r a m e ”?  S u re ly  sc ience i s  more e x a c t, more o b jec tive  th a n  t h a t !
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Science can be “exact” only when we agree on acceptable accuracy. A 1000-ton 
rocket streaks 1 kilometer in 3 seconds; do you want to measure the sequence of its 
positions during that time with an accuracy of 10 centimeters? An astronaut in an 
orbiting space station releases a pencil that floats at rest in front of her; do you want to 
track its position to 1-millimeter accuracy for 2 hours? Each case places different 
demands on the inertial frame from which the observations are made. Specific 
figures imply specific requirements for inertial frames, requirements that must be 
verified by test particles. The astronaut takes off her glasses; then she can determine 
the position of the pencil with only 3-millimeter accuracy. Suddenly— yes! —  
requirements on the inertial frame have become less stringent— unless she is willing 
to observe the pencil over a longer period of time.

2.5 TEST PARTICLE

Test particle defined

Free-float frame definable 
because every substance falls 

with same acceleration

id e a l tool to probe sp ace tim e w ithout a f fect in g it

“Test particle.” How small must a particle be to qualify as a test particle? It must 
have so little mass that, within some specified accuracy, its presence does not affect the 
motion of other nearby particles. In terms of Newtonian mechanics, gravitational 
attraction of the test particle for other particles must be negligible within the accuracy 
specified.

As an example, consider a particle of mass 10 kilograms. A second and less massive 
particle placed 10 centimeters from it and initially at rest will, in less than 3 minutes, 
be drawn toward it by 1 millimeter (see the exercises for this chapter). For measure-
ments of this sensitivity or greater sensitivity, the 10-kilogram object is not a test 
particle. A particle counts as a test particle only when it accelerates as a result of 
gravitational forces without itself causing measurable gravitational acceleration in 
other objects— according to the Newtonian way of speaking.

It would be impossible to define a free-float frame were it not for a remarkable 
feamre of nature. Test particles of different size, shape, and material in the same 
location all fall with the same acceleration toward Earth. If this were not so, an observer 
inside a falling room would notice that an aluminum object and a gold object 
accelerate relative to one another, even when placed side by side. At least one of these 
test particles, initially at rest, would not remain at rest within the falling room. That is, 
the room would not be a free-float frame according to definition.

How sure are we that particles in the same location but of different substances all 
fall toward Earth with equal acceleration? John Philoponus of Alexandria argued, in 
517 A .D ., that when two bodies “differing greatly in weight” are released simulta-
neously to fall, “the difference in their time [of fall] is a very small one.” According to 
legend Galileo dropped balls made of different materials from the Leaning Tower of 
Pisa in order to verify this assumption. In 1905 Baron Roland von Eotvos checked that 
the gravitational acceleration of wood toward Earth is equal to that of platinum within 
1 part in 100 million. In the 1960s R. H. Dicke, Peter G. Roll, and Robert V. 
Krotkov reduced this upper limit on difference in accelerations— for aluminum and 
gold responding to the gravitational field of Sun — to less than 1 part in 100,000 
million (less than 1 in 10“ )- This —  and a subsequent experiment by Vladimir 
Braginsky and colleagues —  is one of the most sensitive checks of fundamental 
physical principles in all of science: the equality of acceleration produced by gravity on 
test particles of every kind.

It follows that a particle made of any material can be used as a test particle to 
determine whether a given reference frame is free-float. A frame that is free-float for a 
tesr particle of one kind is free-float for test particles of all kinds.
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2.6 LOCATING EVENTS WITH A 
LATTICEWORK OF CLOCKS

o nly the n e arest clock records an even t

The fundamental concept in physics is event. An event is specified not only by a place 
but also by a time of happening. Some examples of events are emission of a particle or a 
flash of light (from, say, an explosion), reflection or absorption of a particle or light 
flash, a collision.

How can we determine the place and time at which an event occurs in a given 
free-float frame? Think of constructing a frame by assembling meter sticks into a 
cubical latticework similar to the jungle gym seen on playgrounds (Figure 2-6). At 
every intersection of this latticework fix a clock. These clocks are identical. They can be 
constructed in any manner, but their readings are in meters of light-travel time 
(Section 1.4).

How are the clocks to be set? We want them all to read the “same time” as one 
another for observers in this frame. When one clock reads midnight (00.00 hours =  0 
meters), all clocks in the same frame should read midnight (zero). That is, we want the 
clocks to be synchronized in this frame.

How are the several clocks in the lattice to be synchronized? As follows: Pick one 
clock in the lattice as the standard and call it the reference clock. Start this reference

La t t ic e w o rk  o f  r o d s a n d  c l o c ks

Sy n c h r o n iz in g  c l o c ks in la t t ice

F IG U RE 2 - 6 .  L a t t ic e w o r k  o f  m e te r  s t ic k s  a n d  clocks.



3 8  CHAPTER 2 FLOATING FREE

Reference event defined
clock with its pointer set initially at zero time. At this instant let it send out a flash of 
light that spreads out as a spherical wave in all directions. Call the flash emission the 
reference event and the spreading spherical wave the reference flash.

When the reference flash gets to a slave clock 5 meters away, we want that clock to 
read 5 meters of light-travel time. Why? Because it takes light 5 meters of light-travel 
time to travel the 5 meters of distance from reference clock to slave clock. So an 
assistant sets the slave clock to 5 meters of time long before the experiment begins, 
holds it at 5 meters, and releases it only when the reference flash arrives. (The assistant 
has zero reaction time or the slave clock is set ahead an additional time equal to the 
reaction time.) When assistants at all slave clocks in the lattice follow this prearranged 
procedure (each setting his slave clock to a time in meters equal to his own distance 
from the reference clock and starting it when the reference light flash arrives), the 
lattice clocks are said to be synchronized.

This is an awkward way to synchronize lattice docks with one another. Is there some 
simpler and more conventional way to carry out this synchronization?

There are other possible ways to synchronize clocks. For example, an extra portable 
clock could be set to the reference clock at the origin and carried around the lattice in 
order to set the rest of the clocks. However, this procedure involves a moving clock. 
We saw in Chapter 1 that the time between two events is not necessarily the same as 
recorded by clocks in relative motion. The portable clock will not even agree with the 
reference clock when it is brought back next to it! (This idea is explored more fully in 
Section 4.6.) However, when we use a moving clock traveling at a speed that is a very 
small fraction of light speed, its reading is only slightly different from that of clocks 
fixed in the lattice. In this case the second method of synchronization gives a result 
nearly equal to the first— and standard —  method. Moreover, the error can be made 
as small as desired by carrying the portable clock around sufficiently slowly.

Locate event with latticework
Use the latticework of synchronized clocks to determine location and time at which 

any given event occurs. The space position of the event is taken to be the location of the 
clock nearest the event. The location of this clock is measured along three lattice 
directions from the reference clock: northward, easrward, and upward. The time of the 
event is taken to be the time recorded on the same lattice clock nearest the event. The 
spacetime location of an event then consists of four numbers, three numbers that 
specify the space position of the clock nearest the event and one number that specifies 
the time the event occurs as recorded by that clock.

The clocks, when installed by a foresighted experimenter, will be recording clocks. 
Each clock is able to detect the occurrence of an event (collision, passage of light-flash 
or particle). Each reads into its memory the nature of the event, the time of the event, 
and the location of the clock. The memory of all clocks can rhen be read and analyzed, 
perhaps by automatic equipment.

Why a latticework built of rods that are 1 meter long? What is special about 1 meter? 
Why not a lattice separation of 100 meters between recording clocks? Or 1 millimeter?

When a clock in the 1-meter lattice records an event, we will not know whether the 
event so recorded is 0.4 meters to the left of the clock, for instance, or 0.2 meters to 
the right. The location of the event will be uncertain to some substantial fraction of a 
meter. The time of the event will also be uncertain with some appreciable fraaion of 
a meter of light-travel time, because it may take that long for a light signal from the 
event to reach the nearest clock. However, this accuracy of a meter or less is quite
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adequate for observing the passage of a rocket. It is extravagantly good for measure- 
menrs on planetary orbits— for a planer it would even be reasonable to increase the 
lattice spacing from 1 meter ro hundreds of meters.

Neither 100 meters nor 1 meter is a lattice spacing suitable for studying the tracks 
of particles in a high-energy accelerator. There a centimeter or a millimeter would be 
more appropriate. The location and time of an event can be determined to whatever 
accuracy is desired by constructing a latticework with sufficiently small spacing.

2.7 OBSERVER
ten thousand local w itn esses

In relativity we often speak about the observer. Where is this observer? At one place, 
or all over the place? Answer: T he w ord  “observer” is a sho rthand  way o f 
speaking abou t the w hole collection o f record ing  clocks associated w ith 
one free-float fram e. No one real observer could easily do what we ask of the “ideal 
observer” in our analysis of relativity. So it is best to think of the observer as a person 
who goes around reading out the memories of all recording clocks under his control. 
This is the sophisticated sense in which we hereafter use the phrase “the observer 
measures such-and-such.”

Location and time of each event is recorded by the clock nearest that event. We 
intentionally limit the observer’s report on events to a summary of data collected from 
clocks. We do not permit the observer to report on widely separated events that he 
himself views by eye. The reason: travel time of light! It can take a long time for light 
from a distant event to reach the observer’s eye. Even the order in which events are seen 
by eye may be wrong: Light from an event that occurred a million years ago and a 
million light-years distant in our frame is just entering our eyes now, after light from an 
event that occurred on Moon a few seconds ago. We see these two events in the “wrong 
order” compared with observations recorded by our far-flung latticework of recording 
clocks. For this reason, we limit the observer to collecting and reporting data from the 
recording clocks.

The wise observer pays attention only to clock records. Even so, light speed still 
places limits on how soon he can analyze events after they occur. Suppose that events in 
a given experiment are widely separated from one another in interstellar space, where a 
single free-float frame can cover a large region of spacetime. Let remote events be 
recorded instantly on local clocks and transmitted by radio to the observer’s central 
control room. This information transfer cannot take place faster than the speed of 
light —  the same speed at which radio waves travel. Information on dispersed events is 
available for analysis at a central location only after light-speed transmission. This 
information will be full and accurate and in no need of correction —  but it will be late. 
Thus all analysis of events must take place after— sometimes long after! — events are 
over as recorded in that frame. The same difficulty occurs, in principle, for a free-float 
frame of any size.

Nature puts an unbreakable speed limit on signals. This limit has profound 
consequences for decision making and control. A space probe descends onto Triton, a 
moon of the planet Neptune. The probe adjusts its rocket thrust to provide a 
slow-speed “soft” landing. This probe must carry equipment to detect its distance 
from Triton’s surface and use this information to regulate rocket thrust on the spot, 
without help from Earth. Earth is never less than 242 light-minutes away from 
Neptune, a round-trip radio-signal time of 484 minutes— more than eight hours. 
Therefore the probe would crash long before probe-to-surface distance data could be 
sent to Earth and commands for rocket thrust returned. This time delay of information 
transmission does not prevent a detailed retrospective analysis on Earth of the probe’s 
descent onto Triton —  but this analysis cannot take place until at least 242 minutes

O b se r v e r  d e f in e d

O b se r v e r  lim it ed to c l o c k  r e a d i n g s

S p e e d  limit: c 
It's t h e la w !
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S AMPL E  PROB L EM  2-1

M E T E O R  A LE R T !
Interstellar Command Center receives word by 
radio that a meteor has just whizzed past an out-
post situated 100 light-seconds distant (a fifth of 
Earth-Sun distance). The report warns that the 
meteor is headed directly toward Command

SOLUTIO N

The warning radio signal and the meteor leave the 
outpost at the same time. The radio signal moves 
wirh light speed from outpost to Command 
Center, covering the 100 light-seconds of distance 
in 100 seconds of time. During this 100 seconds 
the meteor also travels roward Command Center. 
The meteor moves at one quarter light speed, so in 
100 seconds it covers one quarter of 100 light-se-
conds, or 2 5 light-seconds of distance. Therefore, 
when the warning arrives at Command Center, the 
meteor is 100 — 25 =  75 light-seconds away.

Center at one quarter light speed. Assume radio 
signals travel with light speed. How long do Com-
mand Center personnel have to take evasive ac-
tion?

The meteor takes an additional 100 seconds of 
time to move each additional 2 5 light-seconds of 
distance. So it covers the remaining 75 light-se-
conds of distance in an additional time of 300 
seconds.

In brief, after receiving the radio warning. 
Command Center personnel have a relaxed 300 
seconds —  or five minutes —  to stroll ro their me-
teor-proof shelter.

after the event. Could we gather last-minute information, make a decision, and send 
back control instructions? No. Nature rules our micromanagement of the far-away 
(Sample Problem 2-1).

S p e e d  in m e t e rs p e r  m e te r

2.8 MEASURING PARTICLE SPEED
re ference fra m e clocks an d rods put to use

The recording clocks reveal particle motion through the lattice; Each clock that the 
particle passes records the time of passage as well as the space location of this event. 
How can the path of the particle be described in terms of numbers? By recording 
locations of these events along the path. Distances between locations of successive 
events and time lapse between them reveal rhe particle speed —  speed being space 
separation divided by time taken to traverse this separation.

The conventional unit of speed is meters per second. However, when time is 
measured in meters of light-travel time, speed is expressed in meters of distance 
covered per meter of time. A flash of light moves one meter of distance in one meter of 
light-travel time: its speed has the value unity in units of meters per meter. In contrast, 
a particle loping along at half light speed moves one half meter of distance per meter of 
time; its speed equals one half in units of meter per meter. More generally, particle 
speed in meters per meter is the ratio of its speed to light speed:

(particle speed)
_  (meters of distance covered by particle) 

(meters of time required to cover that distance) 

_  (particle speed in meters/second)

(speed of light in meters/second)



In this book we use the letter p to symbolize the speed of a particle in meters of distance 
per meter of time, or simply meters per meter. Some authors use the lowercase Greek 
letter beta; Let stand for velocity in conventional units (such as meters per 
second) and c stand for light speed in the same conventional units. Then
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( 2- 1)

From the motion of test particles through a latticework of clocks —  or rather from 
records of coincidences of these particles with clocks —  we determine whether the 
latticework constitutes a free-float frame. IF records show (a) that— within some 
specified accuracy —  a test particle moves consecutively past clocks that lie in a straight 
line, (b) that test-particle speed calculated from the same records is constant— again, 
within some specified accuracy — and, (c) that the same results are true for as many 
test-particle paths as the most industrious observer cares to trace throughout the given 
region of space and time, THEN the lattice constitutes a free-float (inertial) frame 
throughout that region of spacetime.

T est  f o r f r e e - f lo a t  f r a m e

P a r tic le  speed  a s  a  f r a c t io n  o f  l ig h t  speed  is  c e r ta in ly  a n  u n c o n v e n tio n a l u n i t  o f  

m easure. W h a t  a d v a n ta g e s  does i t  h a v e  t h a t  j u s t i f y  th e  w o rk  n eed ed  to  become f a m i l i a r  

w i t h  i t ?

The big advantage is that it is a measure of speed independent of units of space and 
time. Suppose that a particle moves with respect to Earth at half light speed. Then it 
travels— with respect to Earth— one half meter of distance in one meter of light 
travel time. It travels one half light-year of distance in a period of one year. It travels 
one half light-second of distance in a time of one second, one half light-minute in one 
minute. Units do not matter as long as we use the same units to measure distance and 
time; the result always equals the same number: 1 /2 . Another way to say this is that 
speed is a fraction; same units on top and bottom of the fraction cancel one another. 
Fundamentally, v is unit-free. O f course, if we wish we can speak of “meters per 
meter."

2.9 ROCKET FRAME
d oes it m ove? or is it the one a t rest?

Let two reference frames be two different latticeworks of meter sticks and clocks, one 
moving uniformly relative to the other, and in such a way that one row of clocks in each 
frame coincides along the direction of relative motion of the two frames (Figure 2-7). 
Call one of these frames laboratory  fram e and the other— moving to the right 
relative to the laboratory frame —  rocket fram e. The rocket is unpowered and coasts 
along with constant velocity relative to the laboratory. Let rocket and laboratory 
latticeworks be overlapping in the sense that a region of spacetime exists common to 
both frames. Test particles move through this common region of spacetime. From 
motion of these test particles as recorded by his own clocks, the laboratory observer 
verifies that his frame is free-float (inertial). From motion of the same test particles as 
recorded by her own clocks, the rocket observer verifies that her frame is also free-float 
(inertial).

Now we can describe the motion of any particle with respect to the laboratory 
frame. The same particles and —  if they collide —  the same collisions may be mea-
sured and described with respect to the free-float rocket frame as well. These particles, 
their paths through spacetime, and events of their collisions have an existence inde-

Ro c k e t  f r a m e d e f in e d
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F IG U RE 2 - 7 .  L a b o r a to r y  a n d  ro c ke t f r a m e s .  A  second ago the tw o latticew orks were intermeshed.

DifFerent frames lead to 
different descriptions

pendent of any free-float frames in which they are observed, recorded, and described. 
However, descriptions of these common paths and events are typically different for 
different free-float frames. For example, laboratory and rocket observers may not 
agree on the direction of motion of a given test particle (Figure 2-8). Every track that is 
straight as plotted with respect to one reference frame is straight also with respect to the 
other frame, because both are free-float frames. This straightness in both frames is 
possible only because one free-float frame has uniform velocity relative to any other

L A B O R A T O RY
FR A M E

R O C K ET
( U N P O W ER E D )

FR A M E
FIG U RE 2 - 8 .  A  se r ie s  o f  “s n a p s h o ts "  o f  a  t y p ic a l  te s t  p a r t i c l e  a s  m e a s u r e d  f r o m  la b o r a to r y  a n d  
ro cke t f r e e - f lo a t  f r a m e s ,  r e p r e s e n te d  b y  c u ta w a y  c y lin d e r s . S ta r t a t  the bottom a n d  read upw ard  
(tim e progresses from  bottom to top).
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overlapping free-float frame. However, the direction of this path differs from labora-
tory to rocket frame, except in the special case in which the particle moves along the 
line of relative motion of two frames.

How many different free-float rocket frames can there be in a given region of 
spacetime? An unlimited number! Any unpowered rocket moving through that region 
in any direction is an acceptable free-float frame from which to make observations. 
More: There is nothing unique about any of these frames as long as each of them is 
free-float. All “rocket” frames are unpowered, all are equivalent for carrying out 
experiments. Even the so-called “laboratory frame” is not unique; you can rename ir 
“Rocket Frame Six” and no one will ever know the difference! All free-float (inertial) 
frames are equivalenr arenas in which to carry out physics experiment. That is the 
logical basis for special relativiry, as described more fully in Chapter 3.

Many possible free-float frames

No unique free-float frame

A  rocket ca rr ie s  a  firec ra cker . T h e  fir e c ra c k e r  explodes. D oes th i s  e v e n t— th e  exp losion  

—  ta k e  p la ce  in  th e  rocket f r a m e  or in  th e  la b o ra to ry  fr a m e ?  W h ic h  is  th e  “h o m e "  f r a m e  

f o r  th e  e v e n t?  A  second  firec ra cker , o r ig in a lly  a t  rest in  th e  la b o ra to ry  f r a m e ,  explodes. 

D o es th i s  second  ev e n t occur in  th e  la b o ra to ry  f r a m e  or in  th e  rocket f r a m e ?

Events are primary, the essential stuff of Nature. Reference frames are secondary, 
devised by humans for locating and comparing events. A given event occurs in both 
ftames— and in all possible frames moving in all possible directions and with all 
possible constant relative speeds through the region of spacetime in which the event 
occurs. The apparatus that “causes” the event may be at rest in one free-float frame; 
another apparatus that “causes” a second event may be at rest in a second free-float 
frame in motion relative to the first. No matter. Each event has its own unique 
existence. Neither is “owned” by any frame at all.

A spark jumps 1 millimeter from the antenna of Mary’s passing spaceship to a pen 
in the pocket of John who lounges in the laboratory doorway (Section 1.2). The 
“apparatus” that makes the spark has parts riding in different reference frames —  
pen in laboratory frame, antenna in rocket frame. The spark jump —  in which frame 
does this event occur? It is not the property of Mary, not the property of John —  not 
the property of any other observer in the vicinity, no matter what his or her state of 
motion. The spark-jump event provides data for every observer.

Drive a steel surveying stake into the ground to mark the corner of a plot of land. 
Is this a “Daytime stake” or a “Nighttime stake”? Neither! It is just a marking 
a location in space, the arena of surveying. Similarly an event is neither a “laboratory 
event” nor a “rocket event.” It is just an even t,  marking a location in sp a c e tim e ,  the 
arena of science.

Laboratory frame or rocket frame: Which one is the “primary” free-float frame, the 
one “really” at rest? There is no way to tell! We apply the names “laboratory” and 
“rocker” to two free-float enclosures in interstellar space. Someone switches the 
nameplates while we sleep. When we wake up, there is no way to decide which is 
which. This realization leads to Einstein’s Principle of Relariviry and proof of the 
invariance of the interval, as described in Chapter 3.

2.10 SUMMARY
w h a t a  free- f lo a t fra m e is an d w h a t i t 's good for

The free-float fram e (also called the inertial fram e and the Lorentz fram e)
provides a setting in which to carry out experiments without the presence of so-called 
‘ ‘gravitational forces. ’ ’ In such a frame, a particle released from rest remains at rest and



a particle in motion continues that motion without change in speed or in direction 
(Section 2.2), as Newton declared in his First Law of Motion.

Where does that frame of reference sit? Where do the east-west, north-south, 
up-down lines run? We might as well ask where on the flat landscape in the state of 
Iowa we see the lines that mark the boundaries of the townships. A concrete marker, to 
be sure, may show itself as a corner marker at a place where a north-south line meets an 
east-west line. Apart from such on-the-spot evidence, those lines are largely invisible. 
Nevertheless, they serve their purpose: They define boundaries, settle lawsuits, and fix 
taxes. Likewise imaginary for the most part are the clock and rod paraphernalia of the 
idealized inertial reference frame. Work of the imagination though they are, they 
provide rhe conceptual framework for everything that goes on in the world of particles 
and radiation, of masses and motions, of annihilations and creations, of fissions and 
fusions in every context where tidal effects of gravity are negligible.

Our ability to define a free-float frame depends on the fact that a test partic le  
made of any material whatsoever experiences the same acceleration in a given gravita-
tional field (Section 2.5).

Near a massive (“gravitating”) body, we can still define a free-float frame. How-
ever, in such a frame, free test particles typically accelerate toward or away from one 
another because of the nonuniform field of the gravitating body (Section 2.3). This 
limits —  in both space and time —  the size of a free-float frame, the domain in which 
the laws of motion are simple. The frame will continue to qualify as free-float and 
special relativity will continue to apply, provided we reduce the spatial extent, or the 
time duration of our experiment, or both, until these relative, or tidal, motions of test 
particles cannot be detected in our circumscribed region of spacetime. This is what 
makes special relativity "special” or limited (French: relativite restreinte: “restricted 
relativity”). General relativity (the theory of gravitation) removes this limitation 
(Chapter 9).

So there are three central characteristics of a free-float frame. (1) We can “get rid of 
gravity” by climbing onto (getting into) a free-float frame. (2) The existence of a 
free-float frame depends on the equal acceleration of all particles at a given location in 
a gravitational field —  in Newton’s way of speaking. (3) Every free-float frame is of 
limited extent in spacetime. All three characteristics appear in a fuller version of the 
quotation by Albert Einstein that began this chapter:

At that moment there came to me the happiest thought of my life . . . for an observer 
falling freely from the roof of a house no gravitational field exists during his fa ll  —  at least 
not in his immediate vicinity. That is, if the observer releases any objects, they remain in a 
state of rest or uniform motion relative to him, respectively, independent of their unique 
chemical and physical nature. Therefore the observer is entitled to interpret his state as 
that of “rest.” -uer"
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CHAPTER 2 EXERCISES

PRACTICE
2-1 hum« � ball
A person rides in an elevator that is shot upward out 
of a cannon. Think of the elevator after it leaves the 
cannon and is moving freely in the gravitational field 
of Earth. Neglect air resistance.

a  While the elevator is still on the way up, the 
person inside jumps from the “floor” of the elevator. 
Will the person (1) fall back to the “floor” of the 
elevator? (2) hit the “ceiling” of the elevator? (3) do 
something else? If so, what?

b  The person waits to jump until after the eleva-
tor has passed the top if its trajectory and is falling 
back toward Earth. Will your answers to part a be 
different in this case?

C How can the person riding in the elevator tell 
when the elevator reaches the top of its trajectory?

2-2 ffree-float bounce
Test your skill as an acrobar and contorrionist! Fasren 
a weight-measuring barhroom scale under your feet 
and bounce up and down on a trampoline while 
reading the scale. Describe readings on rhe scale at

different times during the bounces. During what part 
of each jump will the scale have zero reading? Ne-
glecting air resisrance, whar is the longest part of the 
cycle during which you mighr consider yourself to be 
in a free-float frame?

2-3 p rac t ica l synchro n iza t io n of 
clocks

You are an observer in the laboratory frame stationed 
near a clock wirh spatial coordinates x  =  6 light- 
seconds, y — 8 light-seconds, and z =  0 light-seconds. 
You wish to synchronize your clock with the one at 
the origin. Describe in detail and with numbers how 
to proceed.

2-4 synchro niza tio n b y a 
t ra v e lin g  clock

Mr. Engelsberg does nor approve of our merhod of 
synchronizing clocks by light flashes (Section 2.6).

a  “I can synchronize my clocks in any way I 
choose!” he exclaims. Is he righr?

Mr. Engelsberg wishes to synchronize two identical 
clocks, named Big Ben and Little Ben, which are 
relatively at rest and separated by one million kilome-
ters, which is 10^ meters or approximately three times
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the distance between Earth and Moon. He uses a third 
clock, identical in construction with the first two, that 
travels with constant velocity between them. As his 
moving clock passes Big Ben, it is set to read the same 
time as Big Ben. When the moving clock passes Little 
Ben, that outpost clock is set to read the same time as 
the traveling clock.

b  “Now Big Ben and Little Ben are synchro-
nized,” says Mr. Engelsberg. Is he right?

c How much out of synchronism are Big Ben and 
Little Ben as measured by a latticework of clocks — at 
rest relative to them both —  that has been synchro-
nized in the conventional manner using light flashes? 
Evaluate this lack of synchronism in milliseconds 
when the traveling clock that Mr. Engelsberg uses 
moves at 360,000 kilometers/hour, or 10’ meters/ 
second.

d Evaluate the lack of synchronism when the 
traveling clock moves 100 times as fast.

e  Is there any earthly reason —  aside from mat-
ters of personal preference— why we all should not 
adopt the method of synchronization used by Mr. 
Engelsberg?

2-5 Ea r th 's su rface as a free- 
ffloat fra m e

Many experiments involving fast-moving particles 
and light itself are observed in earthbound laborato-
ries. Typically these laboratories are not in free fall! 
Nevertheless, under many circumstances laboratories 
fixed to the surface of Earth can satisfy the conditions 
required to be called free-float frames. An example;

a  In an earthbound laboratory, an elementary 
particle with speed v =  0.96 passes from side to side 
through a cubical spark chamber one meter wide. For 
what length of laboratory time is this particle in transit 
through the spark chamber? Therefore for how long a 
time is the experiment “in progress”? H ow  far will a 
separate test particle, released from rest, fall in this 
time? [Distance of fall from rest =  where
g =  acceleration of gravity ^ 1 0  meters/second^ and 

is the time of free fall in seconds.} Compare your 
answer with the diameter of an atomic nucleus (a few 
times 10“ ' ’ meter).

b  How wide can the spark chamber be and still 
be considered a free-float frame for this experiment? 
Suppose that by using sensitive optical equipment (an 
in terferom eter) you can detect a test particle 
change of position as small as one wavelength of 
visible light, say 500 nanometers =  5 X 10~^ meter. 
How long will it take the test particle to fall this 
distance from rest? How far does the fast elementary 
particle of part a move in that time? Therefore how 
long can an earthbound spark chamber be anti still be 
considered free-float fot this sensitivity of deteaion?

E X ER C ISE 2 - 6 .  Schematic d iagram  o f  tw o ba ll bearings fa l l in g  

onto E a rth ’s surface. N o t to scale.

2-6 h orizo n tal ex ten t of free- 
f loa t fra m e n ear Earth

Consider two ball bearings near the surface of Earth 
and originally separated horizontally by 20 meters 
(Section 2.3). Demonstrate that when released from 
rest (relative to Earth) the particles move closer to-
gether by 1 millimeter as they fall 315 meters, using 
the following method of similar triangles or some 
other method.

Each particle falls from rest toward the center of 
Earth, as indicated by arrows in the figure. Solve the 
problem using the ratio of sides of similar triangles 
abc and a'h'c'. These triangles are upside down with 
respect to each other. However, they are similar be-
cause their respective sides are parallel: Sides ac and 
a'c' are parallel to each other, as are sides be and b'c' 
and sides ab and a'b '. We know the lengths of some 
of these sides. Side a'c' =  315 meters is the height of 
fall (greatly exaggetated in the diagtam); side ac is 
effectively equal to the radius of Earth, 6,371,000 
meters. Side ab =  (1/2) (20 meters) equals half the 
original separation of the particles. Side a'b' equals 
HALF their CHANGE in separation as they fall onto 
Earth’s surface. Use the ratio of sides of similar trian-
gles to find this “half-change” and therefore the en-
tire change in separation as two particles initially 20 
meters apart horizontally fall from rest 315 meters 
onto the surface of Earth.

2-7 lim it on free- f lo a t fra m e 
n ear Ea r t h 's Moon

Release two ball bearings from rest a horizontal dis-
tance 20 meters apart near the surface of Earth’s 
Moon. By how much does the separation between 
them dectease as they fall 315 meters? How many 
seconds elapse during this 315-metet fall? Assume 
that an initial vertical separation of 20 meters is in-
creased by twice the change in horizontal separation in 
a fall through the same height. State clearly and com-
pletely the dimensions of the tegion of spacetime in 
which such a freely falling frame constitutes an inertial 
frame (to the given accuracy). Moon radius equals
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1738 kilometers. Gravitational acceleration 
Moon’s surface: g =  1.62 meters/second^.

at

2-8 v e r t ic a l e x ten t of free- f lo a t 
fra m e n e ar Earth

N ote: This exercise makes use of elementary calculus 
and the Newtonian theory of gravitation.

A paragraph in Section 2.3 says:

As another example, drop the same antique [20-meter- 
long] railway coach from rest in a v e rt ic a l orientation, 
with the lower end of the coach initially 315 meters 
from the surface of Earth (Figure 2-5, right). Again 
release two tiny ball bearings from rest at opposite ends 
of the coach. In this case, during the time of fall [8 
seconds], the ball bearings move a p a r t by a distance of 
two millimeters because of the greater gravitational 
acceleration of the one nearer Earth, as Newton would 
put it. This is twice the change that occurs for horizontal 
separation.

Demonstrate this 2-millimeter increase in separation. 
The following outline may be useful. Take the gravi-
tational acceleration at the surface of Earth to be^„ =
9.8 meters/second^ and the radius of Earth to be r„ =  
6.37 X 10® meters. More generally, the gravitational 
acceleration of a particle of mass m a distance r from 
the center of Earth (mass M) is given by the expression

F
m

GM GM ti
4 .2

a  Take the differential of this equation for g to 
obtain an approximate algebraic expression for Ag, 
the change in g, for a small change Ar in height.

b  Now use Ay  =  to 6od an algebraic

expression for increase in distance Ay  between ball 
bearings in a fall that lasts for time t.

C Substitute numbers given in the quotation 
above to verify the 2-millimeter change in separation 
during fall.

2-9 the risin g  ra ilw a y  coach
You are launched upward inside a railway coach in a 
horizontal position with respect to the surface of 
Earth, as shown in the figure. After the launch, but 
while the coach is still rising, you release two ball 
bearings at opposite ends of the train and at rest with 
respect to the train.

a  Riding inside the coach, will you observe the 
distance between the ball bearings to increase or de-
crease with time?

b  Now you ride in a second railway coach 
launched upward in a vertical position with respect to

□ □ □ □ □ □ □ □ □ D O  

--------- 0 ^

E X ER C ISE 2 - 9 .  Free-float ra ilw a y  coach rising  from  E a r th ’s su r-
face, as observed in  E arth  fram e. Tw o ha ll bearings were ju s t  
released from  rest w ith  respect to the coach. W h a t w i l l  be their  
subsequent motion as observed from  inside the coach? Figure not to 
scale.

the surface of Earth (not shown). Again you release 
two ball bearings at opposite ends of the coach and at 
rest with respect to the coach. Will you observe these 
ball bearings to move together or apart?

c In either of the cases described above, can you, 
the rider in the railway coach, distinguish whether the 
coach is rising or falling with respect to the surface of 
Earth solely by observing the ball bearings from inside 
the coach? W hat do you observe at the moment the 
coach stops rising with respect to Earth and begins to 
fall?

2 -1 0  test p a r t ic le?
a  Verify the statement in Section 2.5 that a can-

didate test particle of mass 10 kilograms placed 0.1 
meter from a less massive particle (initially stationary 
with respect to it), draws the second toward it by 1 
millimeter in less than 3 minutes. If this relative 
motion is detectable by equipment in use at the test 
site, the result disqualifies the 10-kilogram particle as 
a “test particle.’’ Assume that both particles are 
spherically symmetric. Use Newton’s Law of Gravi-
tation:

GMm

where the gravitation constant G has the value G =  
6.673 X 10~“  meterV(kilogram-second^). Assume 
that this force does not change appreciably as the 
particles decrease separation by one millimeter.

b  Section 2.3 describes two ball bearings re-
leased 20 meters apart horizontally in a freely falling 
railway coach. They move 1 millimeter closer together 
during 8 seconds of free fall, showing the limitations 
on this inertial frame. Verify that these ball bearings 
qualify as test particles by estimating the distance that 
one will move from rest in 8 seconds under the gravi-
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tational attraction of the other, if both were initially at 
rest in interstellar space far from Earth. Make your 
own estimate of the mass of each ball bearing.

PROBLEMS
2-11 com m unications storm!
Sun emits a tremendous burst of particles that travels 
toward Earth. An astronomer on Earth sees the emis-
sion through a solar telescope and issues a warning. 
The astronomer knows that when the particles arrive, 
they will wreak havoc with broadcast radio transmis-
sion. Communications systems require three minutes 
to switch from broadcast to underground cable. What 
is the maximum speed of the particle pulse emitted by 
Sun such that the switch can occur in time, between 
warning and arrival of the pulse? Take Sun to be 500 
light-seconds from Earth.

2-12 the D icke exp erim en t
a  The Leaning Tower of Pisa is about 5 5 meters 

high. Galileo says, “The variation of speed in air 
between balls of gold, lead, copper, porphyry, and 
other heavy materials is so slight that in a fall of 100 
cubits [about 46 meters} a ball of gold would surely 
not outstrip one of copper by as much as four fingers. 
Having observed this I came to the conclusion that in 
a medium totally devoid of resistance all bodies 
would fall with the same speed.”

Taking four fingers to be equal to 7 centimeters, 
find the maximum fractional difference in the accel-
eration of gravity ^ g /g  between balls of gold and

copper that would be consistent with Galileo’s exper-
imental result.

b  The result of the more modern Dicke experi-
ment is that the fraction H^g/g is not greater than 3 X 

Assume that the fraction has this more recently 
determined maximum value. Reckon how far behind 
the first ball the second one will be when the first 
reaches the ground if they are dropped simultaneously 
from the top of a 46-meter vacuum chamber. Under 
these same circumstances, how far would balls of 
different materials have to fall in a vacuum in a 
uniform gravitational field of 10 meters/second/se- 
cond for one ball to lag behind the other one by a 
distance of 1 millimeter? Compare this distance with 
the Earth-Moon separation (3.8 X 10® meters). 
Clearly the Dicke experiment was not carried out 
using falling balls!

C A plumb bob of mass m hangs on the end of a 
long line from the ceiling of a closed room, as shown 
in the first figure (left). A very massive sphere at one 
side of the closed room exerts a horizontal gravita-
tional force mg, on the plumb bob, where g, =  GM / 
E}, M  is the mass of the large sphere, and R the 
distance between plumb bob and the center of the 
sphere. This horizontal force causes a static deflection 
of the plumb line from the vertical by the small angle 
£. (Similar practical example: In northern India the 
mass of the Himalaya Mountains results in a slight 
sideways deflection of plumb lines, causing difficul-
ties in precise surveying.) The sphere is now rolled 
around to a corresponding position on the other side 
of the room (right), causing a static deflection of the 
plumb by an angle fi of the same magnitude but in the 
opposite direction.

E X ER C ISE 2 - 1 2 ,  f i rst  f i g u r e .  L e ft:  Nearby massive sphere results 
in  sta tic  deflection o f  p lum b line from  vertical. R ig h t:  R olling  the

sphere to the other side results in  s ta tic  deflection o f  p lum b line in  the 
opposite direction.
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Now the angle S is very small. (Deflection due to 
the Himalayas is about 5 seconds of arc, which equals 
0.0014 degrees.) However, as the sphere is rolled 
around and around outside the closed room, an ob-
server inside the room can measure the gravitational 
field gj due to the sphere by measuring with greater 
and greater precision the total deflection angle 2 e ~  2 
sin £ of the plumb line, where fi is measured in ra-
dians. Derive the equation that we will need in the 
calculation of gj.

d  We on Earth have a large sphere effectively 
rolling around us once every day. It is the most mas-
sive sphere in the solar system: Sun itself! What is the 
value of the gravitational acceleration g, =  GM/R^ 
due to Sun at the position of Earth? (Some constants 
useful in this calculation appear inside the back cover 
of this book.)

e  One additional acceleration must be consid-
ered that, however, will not enter our final compari-
son of gravitational acceleration ĝ  for different mate-
rials. This additional acceleration is the centrifugal 
acceleration due to the motion of Earth around Sun. 
When you round a corner in a car you are pressed 
against the side of the car on the outward side of the 
turn. This outward force— called the centrifugal 
pseudoforce or the centrifugal inertial force— is due 
to the acceleration of your reference frame (the car) 
toward the center of the circular turn. This centrifugal 
inertial force has the value m vl^Jr, where is the 
speed of the car in conventional units and r is the 
tadius of the turn. Now Earth moves around Sun in a 
path that is nearly circular. Sun’s gravitational force 
mĝ  acts on a plumb bob in a direction toward Sun; the 
centrifugal inertial force m v^^JR  acts in a direction 
away from Sun. Compare the “centrifugal accelera-
tion” position of Earth with the oppo-
sitely directed gravitational acceleration g, calculated 
in part d. W hat is the net acceleration toward or away 
from Sun of a particle riding on Earth as observed in 
the (accelerated) frame of Earth?

f  Of what use is the discussion thus far? A plumb 
bob hung near the surface of Earth experiences a 
gravitational acceleration ĝ  toward Sun— and an 
equal but opposite centrifugal acceleration mvl^^/R  
away from Sun. Therefore —  in the acceletating refer-
ence frame of Earth —  the bob experiences no net 
force at all due to the presence of Sun. Indeed this is 
the method by which we constructed an inertial frame 
in the first place (Section 2.2): Let the frame be in free 
fall about the center of gravitational attraction. A 
particle at rest on Earth’s surface is in free fall about 
Sun and therefore experiences no net force due to Sun. 
What then does all this have to do with measuring the 
equality of gtavitational acceleration for particles 
made of different substances —  the subject of the

Dicke experiment? Answer: Our purpose is to detect 
the difference— if any— in the gravitational accelet- 
ation gj toward Sun for different materials. The cen-
trifugal acceleration v^/R  away from Sun is presum-
ably the same for all materials and therefore need not 
entet any comparison of different materials.

Consider a torsion pendulum suspended from its 
center by a thin quartz fiber (second figure). A light 
rod of length L  supports at its ends two bobs of equal 
mass made of different materials —  say aluminum 
and gold. Suppose that the gravitational acceleration 
gi of the gold due to Sun is slightly greater than the 
acceleration g2 of the aluminum due to Sun. Then 
there will be a slight net torque on the torsion pendu-
lum due to Sun. Fot the position of Sun shown at left 
in the figure, show that the net torque is counter-
clockwise when viewed from above. Show also that 
the magnitude of this net torque is given by the 
expression

torque =  mgi L /2  — mg  ̂ L /2  =  m{g  ̂ — g ^  L /2 
=  mgsi^g/g) L /2

g Suppose that the fraction (Ag/gP has the 
maximum value 3 X 1 consistent with the results 
of the final experiment, that L has the value 0.06 
meters, and that each bob has a mass of 0.03 kilo-
grams. What is the magnitude of the net torque? 
Compare this to the torque provided by the added 
weight of a bacterium of mass 10“ ’̂ kilogram placed 
on the end of a meter stick balanced at its center in the 
gravitational field of Earth.

h Sun moves atound the heavens as seen from 
Earth. Twelve hours later Sun is located as shown at 
right in the second figure. Show that under these 
changed citcumstances the net torque will have the 
same magnitude as that calculated in part g  but now 
will be clockwise as viewed from above —  in a sense 
opposite to that of part g. This change in the sense of 
the torque every twelve hours allows a small differ-
ence Ag =  gt ~  g2 in the acceleration of gold and 
aluminum to be detected using the torsion pendu-
lum. As the torsion pendulum jiggles on its fiber 
because of random motion, passing trucks. Earth 
tremors and so forth, one needs to consider only those 
deflections that keep step with the changing position 
of Sun.

i A torque on the rod causes an angular rotation 
of the quartz fiber of 6  radians given by the formula

torque =  k9

where k is called the torsion  constant of the fiber. 
Show that the maximum angular rotation of the tor-
sion pendulum from one side to the other during one



5 0  EXERCISE 2-13 DEFLECTION OF STARLIGHT BY SUN

E X ER C ISE 2 - 1 2 ,  s e c o n d  f i g u r e .  Schematic d iagram  o f  the 
D icke experiment. L e ft;  H ypothetica l effect: morning. R ig h t:  H y -
pothetica l effect: evening. A n y  difference in  the g ra v ita tio n a l accel-
eration o f  Sun fo r  gold a n d  a lum inum  should result in  opposite sense

o f  net torque on torsion pendulum  in  the evening compared w ith  the 
morning. The large a lum inum  h a ll has the same mass as the sm all 
high-density gold ball.

rotation of Earth is given by the expression

mg,L ( Ag''e„
Ss

j In practice Dicke’s torsion balance can be 
thought of as consisting of 0.030-kilogram gold and 
aluminum bobs mounted on the ends of a beam 6 X 
10“  ̂ meter in length suspended in a vacuum on a 
quartz fiber of torsion consrant 2 X 10”® newton 
meter/radian. A statistical analysis of the angular 
displacements of this torsion pendulum over long 
periods of time leads to the conclusion that the frac-
tion A^/g for gold and aluminum is less than 3 X 
10” *k To what mean maximum angle of rotation 
from side to side during one rotation of Earth does this 
correspond? Random motions of the torsion 
pendulum —  noise! —  are of much greater amplitude 
than this; hence the need for the statistical analysis of 
the results.
References: R. H. Dicke, “The Eocvos Experiment,” Scientific 
American, Volume 205, pages 8 4 —94 (December, 1961). See also 
P. G. Roll, R. Krockov, and R. H. Dicke, Annals o f Physics, Volume 
26, pages 4 4 2 -5 1 7  (1964). The first of these articles is a popular 
exposition written early in the course of the Dicke experiment. The 
second article reports the final results of the experiment and takes on 
added interest because of its account of the elaborate precautions 
required to insure that no influence that might affect the experiment 
was disregarded. Galileo quote from Galileo Galilei, Dialogues Con-
cerning Two New Sciences, translated by Henry Crew and Alfonso de 
Salvio (Northwestern University Press, Evanston, Illinois, 1950).

2 -13 deflect ion of st arlig h t by 
Sun

Esrimate the deflection of starlight by Sun using an 
elementary analysis. Discussion: Consider first a 
simpler example of a similar phenomenon. An eleva-
tor car of width L is released from rest near the surface 
of Earth. At the instant of release a flash of light is 
fired horizontally from one wall of the car toward the 
other wall. After release the elevator car is an inertial 
frame. Therefore the light flash crosses the car in a 
straight line with respect to the car. With respect to 
Eatth, however, the flash of light is falling —  because 
the elevator is falling. Therefore a light flash is de-
flected in a gravitation field, as Newton would phrase 
it. (How would Einstein phrase it? See Chapter 9.) As 
another example, a ray of starlight in its passage 
tangentially across Earth’s surface receives a gravita-
tional deflection (over and above any refraction by 
Earth’s atmosphere). However, the time to cross 
Earth is so short, and in consequence the deflection so 
slight, that this effect has not yet been detected on 
Earth. At the sutface of Sun, however, the acceleration 
of gravity has the much greater value of 275 meters/ 
second/second. Moreover, the time of passage across 
the surface is much increased because Sun has a 
greater diameter, 1.4 X 10'-' meters. In the following, 
assume that the light just grazes rhe surface of Sun in 
passing.

a  Determine an “effective time of fall’’ from the
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diameter of Sun and the speed of light. From this time 
of fall deduce the net velocity of fall toward Sun 
produced by the end of the whole period of gravita-
tional interaction. (The maximum acceleration acting 
for this “effective time” produces the same net effect 
[calculus proofl} produced by the acmal acceleration 
— changing in magnitude and direction along the 
path —  in the entire passage of the ray through Sun’s 
field of force.)

b  Comparing the lateral velocity of the light with

its forward velocity, deduce the angle of deflection. 
The accurate analysis of special relativity gives the 
same result. However, Einstein’s 1915 general rela-
tivity predicted a previously neglected effect, asso-
ciated with the change of lengths in a gravitational 
field, that produces something like a supplementary 
refraction of the ray of light and doubles the predicted 
deflection. [Deflection observed in 1947 eclipse of 
Sun; (9.8 ±  1.3) X 10“  ̂radian; in the 1952 eclipse: 
(8.2 ±  0.5) X 10-6 radian.}





The name relativity theory was an unfortunate 
choice: The relativity of space and time is not the essential 
thing, which is the independence of laws of Nature from 
the viewpoint of the observer.

A r n o l d  So m m e r f e ld

3.1 THE PRINCIPLE OF RELATIVITY
f undamental science needs only a closed room

How do you know you are moving? Or at rest? In a car, you pause at a stoplight. You 
see the car next to you easing forward. With a shock you suddenly realize that, instead, 
your own car is rolling backward. On an international flight you watch a movie with 
the cabin shades drawn. Can you tell if the plane is traveling at minimum speed or full 
speed? In an elaborate joke, could the plane acmally be sitting still on the runway, 
engines running? How would you know?

Everyday observations such as these form the basis for a conjecture that Einstein 
raised to the status of a postulate and set at the center of the theory of special relativity. 
He called it the P rincip le  o f Relativity. Roughly speaking, the Principle of 
Relativity says that without looking out the window you cannot tell which reference 
frame you are in or how fast you are moving.

Galileo Galilei made the first known formulation of the Principle of Relativity. 
Listen to the characters in his book:

SALVATIUS: Shut yourself up with some friend in the main cabin below decks on some 
large ship, and have with you there some flies, butterflies, and other small flying animals. 
Have a large bowl of water with some fish in it; hang up a bottle that empties drop by 
drop into a wide vessel beneath it. W ith the ship standing still, observe carefully how the 
little animals fly with equal speed to all sides of the cabin. The fish swim indifferently in 
all directions; the drops fall into the vessel beneath; and, in throwing something to your 
friend, you need throw it no more strongly in one direction than another, the distances 
being equal; jumping with your feet together, you pass equal spaces in every direction. 
When you have observed all these things carefully (though there is no doubt that when 
the ship is standing still everything must happen in this way), have the ship proceed with 
any speed you like, so long as the motion is unifotm and not fluctuating this way and that. 
You will discover not the least change in all the effects named, nor could you tell from any

5 3

Prin c i p le  o f  Re la t iv i t y :
W it h sh a d e s d r a w n  y o u  c a n n o t  tell 
y o u r sp e e d

G a l i l e o ;  First k n o w n f o r m u la t io n  
o f  Pr in c i p le  o f  Re la t iv i t y
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of them whether the ship was moving or standing still. In jumping, you will pass on the 
floor the same spaces as before, nor will you make larger jumps toward the stern than 
toward the prow even though the ship is moving quite rapidly, despite the fact that during 
the time that you are in the air the floor under you will be going in a direction opposite to 
your jump. In throwing something to your companion, you will need no more force to get 
it to him whether he is in the direction of the bow or the stern, with yourself situated 
opposite. The droplets will fall as before into the vessel beneath without dropping toward 
the stern, although while the drops are in the air the ship runs many spans. The fish in 
their water will swim toward the front of their bowl with no more effort than toward the 
back, and will go with equal ease to bait placed anywhere around the edges of the bowl. 
Finally the butterflies and flies will continue their flights indifferently toward every side, 
nor will it ever happen that they are concentrated toward the stern, as if tired out from 
keeping up with the course of the ship, from which they will have been separated during 
long intervals by keeping themselves in the air . . .

GALILEO GALILEI
Pisa, February 15, 1 5 6 4 — A rcetri, near Florence, J a n u a ry  8 , 1 6 4 2

“My portrait is now finished, a very good likeness, by an excellent hand.”
— September 22, 1635

*  *  *

“If ever any persons might challenge to be signally distinguished for their intellect from 
other men, Ptolemy and Copernicus were they that had the honor to see farthest into and 
discourse most profoundly of the World’s systems.”

* * *
“My dear Kepler, what shall we make of all this? Shall we laugh, or shall we cry?”

“When shall I cease from wondering?”
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SAGREDUS: Although it did not occut to me to put these observations to the test when I 
was voyaging, I am sure that they would take place in the way you desaibe. In 
confirmation of this I remember having often found myself in my cabin wondering 
whether the ship was moving or standing still; and sometimes at a whim I have supposed 
it to be going one way when its motion was the opposite . . .

The Galilean Principle of Relativity is simple in this early formulation, yet not as 
simple as it might be. In what way is it simple? Physics looks the same in a ship moving 
uniformly as in a ship at rest. Relative uniform motion of the two ships does not affect 
the laws of motion in either ship. A ball falling straight down onto one ship appears 
from the other ship to follow a parabolic course; a ball falling straight down onto that 
second ship also appears to follow a parabolic course when observed from the first ship. 
The simplicity of the Galilean Principle of Relativity lies in the equivalence of the two 
Earthbound frames and the symmetry between them.

In what way is this simplicity not as great as it might be? In Galileo’s account the 
frames of reference are not yet free-float (inertial). To make them so requires only a 
small conceptual step; from two uniformly moving sea-going ships to two unpowered 
spaceships. Then up and down, north and south, east and west, all become alike. A 
ball untouched by force undergoes no acceleration. Its motion with respect to one 
spaceship is as uniform as it is with respect to the other. This identity of the law of free 
motion in all inertial reference frames is what one means today by the Galilean 
Principle of Relativity.

Galileo could not by any stretch of the imagination have asked his hearer to place 
himself in a spaceship in the year 1632. Yet he could have described the greater 
simplicity of physics when viewed from such a vantage point. Bottles, drops of water, 
and all the other test objects float at rest or move at uniform velocity. The zero 
acceleration of every nearby object relative to the spaceship would have been intelligi-
ble to Galileo of all people. Who had established more clearly than he that relative to 
Earth all nearby objects have a common acceleration?

Einstein’s Principle of Relativity is a generalization of such experiments and many 
other kinds of experiments, involving not only mechanics but also electromagnetism, 
nuclear physics, and so on.

All the laws of physics are the same in every free-float (inertial) reference 
frame.

Ex t e nsio n  o f  G a l i l e o 's r e aso n i n g  
fro m sh ip  to sp a c e sh i p

Prin c i p le  o f  Re la t iv i t y

Einstein’s Principle of Relativity says that once the laws of physics have been estab-
lished in one free-float frame, they can be applied without modification in any other 
free-float frame. Both the mathematical form of the laws of physics and the numerical 
values of basic physical constants that these laws contain are the same in every 
free-float frame. So far as concerns the laws of physics, all free-float frames are 
equivalent.

We can tell where we are on Earth by looking out of the window. Where we are in 
the Milky Way we can tell by the configuration of the Big Dipper and other 
constellations. How fast and in what direction we are going through the larger 
framework of the universe we measure with a set of microwave horns pointed to pick 
up the microwave radiation streaming through space from all sides. But now exclude 
all information from outside. Screen out all radiation from the heavens. Pull down the 
window shade. Then do whatever experiment we will on the movement and collision 
of particles and the action of electric and magnetic forces in whatever free-float frame 
we please. We find not the slightest difference in the fit to the laws of physics between 
measurements made in one free-float frame and those made in another. We arrive at 
the Principle of Relativity in its negative form;

No test of the laws of physics provides any way whatsoever to distinguish one 
free-float frame from another.

Prin c i p le  o f  Re la t iv i t y , 
n e g a t iv e  form
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BOX

THE PRINCIPLE OF RELATIVITY RESTS O N
EMPTINESS!

In his p a p e r on sp ec ia l rela t ivi ty , Einstein sa ys, “ W e will r a ise this conjecture  
(w hose intent will from now on b e re f erre d to os the ‘Principle o f Rela t ivi t y’) to 
o p ostu la te . . . ” Is the Principle o f Rela t ivi ty just o p ostu la t e? All o f sp ec ia l 
rela t ivi ty rests on it. H ow d o w e know it is tru e? W h a t lies behind the Principle 
of Rela t ivi ty?

This is a p hiloso phical question , not a scientific one . You will h ave yo ur own 
o pinion; here is ours. W e think the Principle o f Rela tivi ty as used in sp ec ia l 
rela t ivi ty rests on o ne w ord : em p tiness.

Sp a c e  is empty; there a r e  no kilometer p osts or mileposts in sp a c e . Do you 
w an t to m easure d ista nce an d t ime? Then set up a la t t icew ork o f meter sticks 
an d clocks. Pace off the meter sticks, sy nchro n iz e the clocks. Use the la t t ice- 
w ork to carry out your m easure m en ts. D iscover the la ws o f physics. This 
la t t icew ork is your construct ion , not N a ture's. Do not ask N a ture to ch o ose  
your la t t icew ork in p re f ere n ce to the similar la t t icew ork that I h ave co n �
structed . W h y not? Be ca use sp a c e  is empty . Sp a c e acco m m o d a tes both o f us 
as w e go ab o u t our construct ions an d our investig a t io ns. But it d o es not 
ch o ose ei ther o ne of us in p re f e re n ce to the o ther. H o w can it? Sp a c e  is 
empty . N othing w ha tev er can dist inguish your la t t icew ork from mine. If w e  
d e c id e in secre t to e x ch a n g e la t t icew orks. N a ture will n ever b e the wiser! It 
fo llows that w h a t ev er la ws o f physics you d isco v er em ploying your la t t ice- 
w ork must b e the sa m e la ws o f p hysics I d isco v er using my la t t ice w ork . The 
sa m e is true ev en when our la t t ices move rela t ive to o ne ano th er. W hich one 
of us is a t rest? There is no w a y to tell in em pty sp a ce! This is the Principle of 
Relativi ty.

But is sp a c e  r e a l l y  em p ty? “ Definitely no t!” sa ys modern quantum physics. 
“ Sp a c e is a boiling cauld ro n o f virtual p ar t ic les. To o bse rv e this cauld ro n .

S p a c e  a n d  t ime se p a r a t i o n s 
n o t th e sa m e  in d i f f e re n t  f r a m es

3.2 WHAT IS NOT THE SAME IN 
DIFFERENT FRAMES

not the sa m e : sp ace se p ara t io ns, 
tim e se p ara t io ns, v e lo c i t ies, 
a cce le ra t io ns, fo rces, f ie lds

Notice what the Principle of Relativity does say. It does not say that the time 
between two events is the same when measured from two different free-float frames. 
Neither does it say that space separation between the two events is the same in the two 
frames. Ordinarily neither time nor space separations are the same in the two frames.

The catalog of differences between readings in the two frames does not end with 
labotatory and rocket records of pairs of events. Physics to the Greeks meant the 
science of change and so it does to us today. Motion gives us a stream of events, for 
example the blinks of a firefly or the pulses of a sparkplug flashing as it moves. These 
flashes trace out the sparkplug’s trajectory. Record the positions of two sequential
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sa m ple reg io ns of sp a c e  much sm aller than the pro ton . C a rry  out this sa m �
pling during times much sh orter than the time it ta k es light to cross the d ia m e �
ter o f the p ro t o n . ” Th ese w ords a re  fa miliar or ut terly inco m prehensib le , 
d e p e n d in g on the amount o f our e x p e rie n ce with p hysics. In ei ther c ase , w e 
can av o id d e a lin g with the “ boiling cauld ro n o f virtual p ar t ic les” by o bse rv �
ing even ts that a re  f ar a p a r t  co m p are d with the dimensions o f the pro ton , 
even ts se p a ra t e d  from o ne a n o ther by times long co m p are d with the time it 
ta k es light to cross the d ia m e ter of the pro ton .

In the realm of c l assica l (nonquantum) physics is sp a c e  rea lly em p ty? “ O f  
co urse no t!” sa ys modern cosm olo gy . “ Sp a c e  is full o f st ars an d dust an d  
rad ia t ion an d neutrinos an d white d w arfs an d neutron st ars an d (many b e �
lieve) b lack h o les. To o bse rv e t hese structures, sa m ple re g io ns o f sp a ce  
co m p ara b le in siz e to that o f our g a la x y . Th ese structures ev o lv e an d move 
with resp ec t  to one a n o ther in times co m p ara b le to millions o f y e a rs . ”

So w e ch o ose reg io ns far from m assive structures, a vo id dust, ig nore neu �
trinos an d rad ia t io n , an d m easure even ts that t ake p la ce c lose to get her in 
time co m p are d with a million y e a rs.

N o tice that for the very small an d a lso  for the very la rg e , the “ re g io ns” 
d escr ib e d  sp an both sp a c e an d time —  they a re  reg io ns o f  s p a c e t i m e .  “ Emp �
t in ess” re f ers to sp ace ti m e . Th ere fore w e should h ave sa id  from the b e g in �
ning , “ S p a c e t i m e  is e m p ty ” —  e x ce p t for us an d our a p p a ra t us —  with limita �
t ions d escr ib e d  a b o v e .

In brie f , w e can find “ ef fect ively e m p ty ” reg io ns of sp ace ti m e of sp a tia l 
ex ten t quite a few o rd ers o f magnitude la rg er an d sm aller than dimensions of 
our b o d ies an d of time sp re a d  quite a f ew o rd ers o f magnitude lo n g er an d  
sh ort er than times that d escr ib e our re f le xes. In sp ace ti m e reg io ns o f this 
g e n era l siz e , em pty sp ace tim e can b e found . In em pty sp ace ti m e the Principle 
of Rela tivi ty a p p lies. W h e re the Principle o f Relativi ty a p p lies, sp ec ia l re la t iv �
ity correct ly d escr ib es N a ture .

spark emissions in the laboratory frame. Record also the laboratory time between these 
sparks. Divide the change in position by the increase in time, yielding the laboratory- 
measured velocity of the sparkplug.

Spark events have identities that rise above all differences between reference frames. 
These events are recorded not only in the laboratory but also by recording devices and 
clocks in the rocket latticework. From the printouts of the recorders in the rocket frame 
we read off rocket space and time separations between sequential sparks. We divide. 
The quotient gives the rocket-measured velocity of the sparkplug. But both the space 
separation and the time separation between events, respectively, are ordinarily differ-
ent for the rocket frame than for the laboratory frame. Therefore the rocket-measured 
velocity of the sparkplug is different from the laboratory-measured velocity of that 
sparkplug. Same world. Same motion. Different records of that motion. Figures for 
velocity that differ between rocket and laboratory.

Apply force to a moving object: Its velocity changes; it accelerates. Acceleration is 
the signal that force is being applied. Two events are enough to reveal velocity; three 
reveal change in velocity, therefore acceleration, therefore force. The laboratory ob-
server reckons velocity between the first and second events, then he reckons velocity

V e lo c i t y  n o t th e so m e

A c c e le r a t i o n  n o t th e so m e
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THE SPEED OF LIGHT
A  ""fundamental constant of nature""?
O r a mere factor of conversion between tw o units of measurement?

METERS A N D MILES IN THE 
PARABLE O F THE SURVEY O RS

M e t e r?
O rig in a lly (a d o p t e d France , 1799) o ne ten-millionth of 
the d ist ance a lo n g the surface o f Earth from its e q u a t o r 
to its p o le (in o curve d line o f la t i tude p assin g through 
the ce n ter o f Paris).

M ile?
O rig in a lly o n e tho usand p a c e s  —  d o u b le ste p: right to 
lef t to righ t— of the Roman so ld ier .

M o d ern co n v ersio n f a c t o r?
1 6 0 9 .3 4 4  meters p er mile.

A uthorit y fo r this n u m b er?
M e asu res o f eq uo t or- t o -p o le d ist ance even tu ally  
(1 7 99 to to d ay) la g g e d  in a cc u ra cy co m p are d to la b o �
ra t ory m easure m en t o f d ist ance . So the platinum meter 
rod a t Se v res, Paris, ap pro xim atin g o ne ten-millionth o f 
that d ist an ce , for aw hile b e ca m e —  in an d by i tself —  
the st a n d ard o f d ist an ce . During that time the British 
Parlia m ent an d the United Sta t es C o n g ress rede f in ed  
the inch to b e e x a c t l y  2 .5 4  cent imeters. This d e cre e  
m ad e the co nversio n fact or (5280 feet / mile) times (12 
inches/ foo t) times (2 .54 centimeters/ inch) times (1 / 100  
of a  meter p er centimeter) e q ual to 1 6 0 9 .3 4 4  meters 
p er mile —  exact ly!

A  fu n d a m en ta l co nstan t o f n a t u re?
H ard ly! Rather, the w ork o f two cen turies o f commit �
te es.

SEC O N DS A N D METERS IN SPA CETIM E

Se c o n d ?
O rig in a lly 1 /24 o f 1 /60 o f 1 /60 o f the time from high 
noon o ne d a y  to high noon the nex t d a y . Since 1967 , 
‘ ‘The se co n d is the durat ion o f 9 ,1 9 2 , 6 3 1 , 7 7 0  p erio ds 
o f the rad ia t ion corresp o n d in g to the transit ion b e �
tw een the two hyperf lne le vels of the funda m ental st a te  
of the a tom cesium 1 3 3 . ”

M e t e r?
Definition ev o lv e d from g e o g ra p h ic to platinum meter 
rod to t o d a y ’s ‘ ‘O n e  meter is the d ist an ce t ra ve le d by 
light, in vacuum , in the fract ion 1 / 2 9 9 ,7 9 2 ,4 5 8 o f a  
se c o n d . ”

M o d ern co n v ersio n f a c t o r?
2 9 9 ,7 9 2 , 4 5 8  meters p er se co n d .

A uthority f o r this n u m b er?
M eeting o f G e n e ra l C o n f e re n ce on W eig h ts an d M e a �
sures, 1983 . In the a cc e p t e d  definition o f the meter 
im portant ch a n g es took p la ce o ver the y e a rs , an d like �
w ise in the definition o f the se co n d . With the 1983 de fi �
nition o f the meter t hese two st rea ms of deve lo p m en t  
ha v e m erge d . W h a t use d to b e u n dersto o d as a  m ea �
surement o f the sp e e d  o f light is u n dersto o d t o d a y as 
two w a ys to m easure se p ara t io n in sp ace ti m e .

A  f u n d a m en ta l co nstan t o f n a t u re?
H ard ly! Rather, the w ork of two cen turies o f commit �
te es.

F o rc e  n o t t h e so m e

between the second and third events. Subtracting, he obtains the change in velocity. 
From this change he figures the force applied to the object.

The rocket observer also measures the motion; velocity between the first and second 
events, velocity between second and third events; from these the change in velocity; 
from this the force acting on the object. But the rocket-observed velocities are not 
equal to the corresponding laboratory-observed velocities. The change in velocity also 
differs in the two frames; therefore the computed force on the object is different for
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Co m m e n tary
Is the d ist ance from Eart h ’s e q u a t o r to its p o le a fundam ental co nstan t of 
na t ure? N o . Earth is plast ic an d e v e r chan gin g . Is the d ist ance betNveen the 
two scra tch es on the st a n d ard meter b ar co nstan t? N o . O x id a t io n from 
d e c a d e  to d e c a d e  slo w ly ch a n g es it. Ex p er ts in the art  an d sc ie n ce o f m ea �
surement move to ev er-b e t t er techniq ues. They se arch out an ev er-b e t t er 
o b je c t  to se rv e as bench m ark . V ia ex perim en t a f te r ex perim en t they move 
from old st a n d ards o f m easure m en t to new . The g o a ls? A ccuracy . A v a ila b il �
ity. D e p en d a b il i t y . Reproducib ili ty .

M a k e a  bet t er m easure m en t of the sp e e d  o f light. G a in  in that w a y  bet ter 
k n o w le d g e a b o u t light? N o . W in inst ead an im proved value o f the ra t io 
b e t w een o ne m easure o f sp ace tim e in terval, the meter, an d a n o ther such 
m easure , the seco n d —  both of acc id e n ta l an d historical origin? Be fore 
1983 , y es. Since 1983 , no. T o d a y the meter is d e f i n e d  as the d ista nce light 
travels in a vacuum in the fract ion 1 / 2 9 9 ,7 9 2 ,4 5 8 o f a cesiu m-defined se c �
ond . The two g rea t st rea ms of theory , definition , an d ex perim en t concern in g  
the meter an d the seco n d have f inally b een unified.

W h a t will b e the co nse q u e n ce o f a future, still be t ter, measuring t echniq ue? 
Possib ly it will shift us from the cesiu m -a t o m -b ase d seco n d to a  p u lsa r-b ase d  
seco n d or to a  still more useful st a n d ard for the se co n d . But will that im prove �
ment in precision ch a n g e the sp e e d  of light? N o . Every p ast In ternational 
Com mit tee on W eig h ts an d M e asu res has o p era t e d  on the princip le o f mini �
mum d isloca tion o f st a n d ards; w e have to e x p e c t  that the sp e e d  o f light will 
remain a t the d e cre e d  f igure of 2 9 9 ,7 9 2 ,4 5 8  meters p er se co n d , just as the 
number o f meters in the mile will remain a t 1 6 0 9 .3 4 4 . Through the fixity o f this 
co nversio n fac to r c, a n y substant ial im provement in the a cc u ra cy o f defining 
the seco n d will bring with it an iden tical im provement in the a cc u ra cy of 
defining the meter.

Is 2 9 9 ,7 9 2 , 4 5 8  a fundam ental constan t o f na ture? Might as well ask if 5 2 8 0  
is a  fundam ental constan t o f nature!

rocket observer and laboratory observer. The Principle of Relativity does not deny that 
the force acting on an object is different as reckoned in two frames in relative motion.

An electric field or a magnetic field or some combination of the two, acting on the 
electron, is the secret of action of many a device doing its quiet duty day after day in 
home, factory, or car. An electromagnetic force acting on an electron changes its 
velocity as it moves from event P  to event Q and from Q  to R .  Laboratory and rocket 
observers do not agree on this change in velocity. Therefore they do not agree on the

Electric and magnetic fields 
not the same
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value of the force that changes that velocity. Nor, finally, do they agree on the 
magnitudes of the electric and magnetic fields from which the force derives.

In brief, figures for electric and magnetic field strengths, for forces, and for 
accelerations agree no better between rocket and laboratory observers than do figures 
for velocity. The Principle of Relativity does not deny these differences. It celebrates 
them. It explains them. It systematizes them.

3.3 WHAT IS THE SAME IN DIFFERENT 
FRAMES

the sa m e : p h ysica l la w s, p h ysica l constan ts in 
those la w s

La w s o f p h ysics th e sa m e  
in d i f f e re n t  f r a m es

F u n d a m e n t a l c o nst a n ts th e sa m e

S p e e d  o f lig h t th e sa m e

Different values of some physical quantities between the two frames? Yes, but 
identical physical /am /  For example, the relation between the force acting on a particle 
and the change in velocity per unit time of that particle follows the same law in the 
laboratory frame as in the rocket frame. The force is not the same in the two frames. 
Neither is the change in velocity per unit time the same. But the law that relates force 
and change of velocity per unit time is the same in each of the two frames. All the laws 
of motion are the same in the one free-float frame as in the other.

Not only the laws of motion but also the laws of electromagnetism and all other 
laws of physics hold as true in one free-float frame as in any other such frame. This is 
what it means to say, “No test of the laws of physics provides any way whatsoever to 
distinguish one free-float frame from another.”

Deep in the laws of physics are numerical values of fundamental physical constants, 
such as the elementary charge on the electron and the speed of light. The values of 
these constants must be the same as measured in overlapping free-float frames in 
relative motion; otherwise these frames could be distinguished from one another and 
the Principle of Relativity violated.

One basic physical constant appears in the laws of electromagnetism: the speed of 
light in a vacuum, c =  299,792,458 meters per second. According to the Principle of 
Relativity, this value must be the same in all free-float frames in uniform relative 
motion. Has observation checked this conclusion? Yes, many experiments demon-
strate it daily and hourly in every particle-accelerating facility on Earth. Nevertheless, 
it has taken a long time for people to become accustomed to the apparently absurd 
idea that there can be one special speed, the speed of light, that has the same value 
measured in each of two overlapping free-float frames in relative motion.

Values of the speed of light as measured by laboratory and by rocket observer turn 
out identical. This agreement has cast a new light on light. Its speed rates no longer as a 
constant of nature. Instead, today the speed of light ranks as mere conversion factor 
between the meter and the second, like the factor of conversion from the centimeter to 
the meter. The value of this conversion factor has now been set by decree and the meter 
defined in terms of it (Box 3.2). This decree assumes the invariance of the speed of 
light. No experimental result contradicts this assumption.

In 1905 the PrincipleofRelativity was a shocking heresy. It offended most people’s 
intuition and common-sense way of looking at Nature. Consequences of the Principle 
of Relativity are tried out every day in many experiments where it is continually under 
severe test. Never has this Principle been verified to lead to a single incorrect experi-
mental prediction.
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E X A M P L E S  O F  T HE P R I N C I P L E  O F  
R E L A T I V I T Y
Two overlapping free-float frames are in uniform must necessarily be the same as measured in the 
relative motion. According to the Principle of Rel- two frames? Which quantities are not necessarily 
ativity, which of the quantities on the following list the same as measured in the two frames?

a . numerical value of the speed of light in a vacuum

b. speed of an electron

c. value of the charge on the electron

d. kinetic energy of a proton (the nucleus of a hydrogen atom)

e. value of the electric field at a given point

f. time between two events

g. order of elements in the periodic table

Newton’s First Law of Motion (“A particle initially at rest remains at rest, 
and . . . ”)

SOLUTIO N

b.

d.

e.

The speed of light IS necessarily the same in the two frames. This is one of the 
central tenets of the Principle of Relativity and a basis of the theory of relativity.

The speed of an electron IS NOT necessarily the same in the two frames. 
Determining the speed of a particle depends on space and time measurements 
between events —  such as flashes emitted by the particle. Space and time separa-
tions between events, respectively, can be measured to be different for observers 
in relative motion. So the speed— ratio of distance covered to time elapsed —  can 
be different.

The value of the charge on the electron IS necessarily the same in the two frames. 
Suppose that the charge had one value for the laboratory frame and progressively 
smaller values for rocket frames moving faster and faster relative to the laboratory 
frame. Then we could detect the “absolute velocity’’ of the ftame we are in by 
measuring the charge on the electron. But this violates the Principle of Relativity. 
Therefore the charge on the electron must have the same value in all free-float 
frames.

The kinetic energy of a proton IS NOT necessarily the same in the two frames. 
The value of its kinetic energy depends on the speed of the proton. But speed is 
not necessarily the same as measured in the two frames (b).

The value of the electric field at a given point IS NOT necessarily the same in the 
two frames. The argument is indirect but inescapable: The electric field is 
measured by determining the force on a test charge. Force can be measured by 
change in velocity that the force imparts to a particle of known mass. But the 
velocity— and the change in velocity —  of a particle can be different for observers 
in relative motion (b). Therefore the electric field may be different for observers in 
relative motion.

The time between two events IS NOT necessarily the same in the two frames. 
This is a direct result of the invariance of the interval (Chapter 1 and Section 3.7).
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g . The order of elements in the periodic table by atomic number IS necessarily the 
same in the two frames. For suppose that the atomic number (the number of 
protons in the nucleus) were smaller for helium than for uranium in the labora-
tory frame but greater for helium than for uranium in the rocket frame. Then we 
could tell which frame we were in by comparing the atomic numbers of helium 
and uranium.

h . Newton’s First Law of Motion IS necessarily the same in the two frames. 
Newton’s First Law is teally a definition of the inertial (free-float) frame. We 
assume that all laboratory and rocket frames are inertial.

3.4 RELATIVITY OF SIMULTANEITY
''sa m e l i m e " ?  o rd in a rily  true for o nly one 
fra m e!

Tra in  P a r a d o x : T w o  lig h t n in g b o l ts 
st r i k e sim u l t a n e o usly  
f o r g ro u n d  o b se r v e r

T w o  lig h t n in g b o l ts d o not 
st r i k e sim u l t a n e o usly  

f o r t ra in  o b se r v e r

The Principle of Relativity directly predicts effects that initially seem strange —  even 
weird. Strange or not, weird or not; logical argument demonstrates them and experi-
ment verifies them. One effect has to do with simultaneity: Let two events occur 
separated in space along the direction of relative motion between laboratory and rocket 
frames. These two events, even if simultaneous as measured by one observer, cannot be 
simultaneous as measured by both observers.

Einstein demonstrated the relativity of simultaneity with his famous Train Paradox. 
(When Einstein developed the theory of special relativity, the train was the fastest 
common cartier.) Lightning strikes the front and back ends of a rapidly moving train, 
leaving char marks on the train and on the track and emitting flashes of light that 
travel forward and backward along the train (Figure 3-1). An observer standing on the 
ground halfway between the two char marks on the track receives the two light flashes 
at the same time. He therefore concludes that the two lightning bolts struck the ttack 
at the same time — with respect to him they fell simultaneously.

A second observer rides in the middle of the train. From the viewpoint of the 
observer on the ground, the train observer moves toward the flash coming from the 
front of the train and moves away from the flash coming from the rear. Therefore the 
train observer receives the flash from the front of the train first.

This is just what the train observer finds: The flash from the front of the train arrives 
at her position first, the flash from the rear of the train arrives later. But she can verify 
that she stands equidistant from the ftont and rear of the train, where she sees char 
marks left by the lightning. Moreover, using the Principle of Relativiry, she knows 
that the speed of light has the same value in her train frame as for the ground observer 
(Section 3.3 and Box 3-2), and is the same for light traveling in both directions in her 
frame. Therefore the arrival of the flash first from the front of the train leads her to 
conclude that the lightning fell first on the front end of the train. For her the lightning 
bolts did not fall simultaneously. (To allow the train observer to make only measure-
ments with respect to the train, forcing her to ignote Earth, let the train be a cylinder 
without windows —  in other words a spaceship!)

Did the two lightning bolts strike the front and the back of the train simulta-
neously? Or did they strike at different times? Decide!

Strange as it seems, there is no unique answer to this question. For the situation 
described above, the two events are simultaneous as measured in the Earth frame; they
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F IG U RE 3 - 1 . E inst e in ’s T r a i n  P a ra d o x  i l lu s tr a t in g  th e  re l a t i v i t y  o f  s im u l ta n e i ty . Top: L ight �
ning strikes the front and hack ends of a  moving tra in , leaving char marks on both track and tra in . Each 
emitted flash spreads out in a l l  directions. C enter:  Observer riding in the middle of the tra in concludes tha t 
the two strokes are not simultaneous. H er argument: “ ( I )  I am equidistant from the front and hack char 
marks on the tra in . (2 ) L ight has the standard speed in my frame, and equal speed in both directions. (3) The 
flash arriv ed from the front of the tra in first. Therefore, (4 ) the flash must have left the front of the tra in first ; 
the front lightning holt fe l l before the rear lightning bolt fe ll. I conclude tha t the lightning strokes were not 
simultaneous.” Bottom: Observer standing by the tracks halfway between the char marks on the tracks 
concludes tha t the strokes were simultaneous, since the flashes from the strokes reach him a t  the same time.

are not simultaneous as measured in the train frame. We say that the simultaneity of 
events is, in general, relative, different for different frames. Only in the special case of 
two or more events that occur at the same point (or in a plane perpendicular to the line 
of relative motion at that point— see Section 3.6) does simultaneity in the laboratory 
frame mean simultaneity in the rocket frame. When the events occur at different 
locations along the direction of relative motion, thev cannot be simultaneous in both 
frames. This conclusion is called the relativity  o f sim ultaneity.

The relativity of simultaneity is a difficult concept to understand. Almost without 
exception, every puzzle and apparent paradox used to “disprove” the theory of 
relativity hinges on some misconception about the relativity of simultaneity, -te r'

Sim u l t a n e i t y  is r e la t iv e

3.5 LORENTZ CONTRACTION OF LENGTH
sp ace se p ara t io n be tw een two len g th �
m easurin g e v e n ts? d isag ree m en t!

How do we measure the length of a moving rod —  the distance between one end and 
the other end? One way is to use our latticework of clocks to mark the location of the 
two ends at the same time. But when the rod lies along the direction of relative motion, 
someone riding with the rod does not agree that our marking of the positions of the 
two ends occurs at the same time (Section 3.4). The relativity of simultaneity tells us

Len g th o f  a  r o d  =  se p a r a t i o n  
b e t w e e n  sim u l t a n e o us sp a r k s 
a t  i ts t w o e n d s
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D isa g r e e  a b o u t  sim u l t a n e i t y? 
T h e n d isa g r e e  a b o u t  le n g t h .

that rocket and laboratory observers disagree about the simultaneity of two events 
(firecrackers exploding at the two ends of the rod) that occur at different locations 
along the direction of relative motion. Therefore the two observers disagree about 
whether or not a valid measurement of length has taken place.

Go back to the Train Paradox. For the observer standing on the ground, the two 
lightning bolts strike the front and back of the train at the same time. Therefore for 
him the distance between the char marks on the track constitutes a valid measure of the 
length of the train. In conrrast, rhe observer riding on the train measures rhe front 
lightning bolt to strike first, the rear bolt later. The rider on the train exclaims to her 
Earth-based colleague, “See here! Your front mark was made before the back mark 
— since rhe flash from the front reached me (at the middle of the train) before the flash 
from the back reached me. Of course the train moved during the time lapse between 
these two lightning strikes. By rhe time the stroke fell at the back of the train, the front 
of the train had moved well past the front char mark on the track. Therefore your 
measurement of the length of the train is too small. The train is really longer rhan you 
measured.”

There are other ways to measure the length of a moving rod. Many of these methods 
lead to the same result: the space separation between the ends of the rod is less as 
measured in a frame in which rhe rod is moving than as measured in a frame in which 
the rod is at rest. This effect is called Lorentz contraction . Section 5.8 examines the 
Lorentz contraction quantitatively.

Suppose we agree to measure the length of a rod by determining the position of its 
two ends at the same time. Then an observer for whom the rod is at rest measures the 
rod to be longer than does any other observer. This “rest length” of the rod is often 
called its p ro p e r length.

You keep using the word “ m easure .”  O ccasional ly you say “ observe.”  You never ta l k  
about th a t  most de l ica te , sensitive , a n d  refined o f  our f i v e senses: sight. Why not j u s t  
look a n d  see these remarkable re l a t i v ist i c  ejfects?

We have been careful to say that the relativity of simultaneity and the Lorentz 
contraction are measured, not seen with the eye. M easurement employs the latticework 
of rods and clocks that constitutes a free-float frame. As mentioned in Chapter 2, 
seeing with the eye leads to confused images due to the finite speed of light. Stand in 
an open field in the southern hemisphere as Sun sets in the west and full Moon rises in 
the east: You see Moon as it was 1.3 seconds ago, Sun as it was eight minutes ago, the 
star Alpha Centauri (nearest star visible to the naked eye) as it was 4.34 years ago, 
the Andromeda nebula as it was 2  mill ion y e ars ago —  you see them all now. 
Similarly, light from the two separated ends of a speeding rod typically takes 
different times to reach your eye. This relative time delay results in visual distortion 
that is avoided when the location of each end is recorded locally, with zero or 
minimal delay, by the nearest lattice clock. Visual appearance of rapidly moving 
objects is itself an interesting study, but for most scientific work it is an unnecessary 
distraction. To avoid this kind of confusion we set up the free-float latticework of 
synchronized recording clocks and insist on its use —  at least in principle!

A ha !  Then I  have c augh t you in  a  contradic t ion. F igure 3 - 1  shows l igh tn ing  f lashes 
a n d  tra ins . Is th is not a  p ic ture  o f  w h a t we w ould see w i th  our eyes?

No. Strictly speaking, each of the three “pictures” in Figure 3-1 summarizes where 
parts of the train are as recorded by the Earth latticework of clocks at a given instant 
of Earth time. The position of each light flash at this instant is also recorded by the 
clocks in the lattice. The summary of data is then given to a draftsman, who draws 
the picture for that Earth time. To distinguish such a drafted picture from the visual
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view, we will often refer to it as a plot. For example. Figure 3-1 (top) is the Earth 
plot at the time when lightning bolts strike the two ends of the train.

Actually, all three plots in Figure 3-1 show approximately what you see through a 
telescope when you are very far from the scene in a direction perpendicular ro the 
direction of motion of the train and at a position centered on the action. At such a 
remote location, light from all parts of the scene takes approximately equal times to 
reach your eye, so you would see events and objects at approximately the same time 
according ro Earth clocks. Of course, you receive this information later than it 
actually occurs because of the time it takes light to reach you.

3.6 INVARIANCE OF TRANSVERSE 
DIMENSION

'' f a s t e r "  does not m ean " t h in n e r "  or " f a t t e r "

A rocket ship makes many trips past the laboratory observer, each at successively 
higher speed. For each new and greater speed of the rocket, the laboratory observer 
measures its length to be shorter than it was on the trip before. This observed 
contraction is long itud inal — along its direction of motion. Does the laboratory 
observer also measure contraction in the transverse dimension, perpendicular to the 
direction of relative motion? In brief, is the rocket measured to get thinner as well as 
shorter as it moves faster and faster?

The answer is No. This is confirmed experimentally by observing the width of 
electron and proton beams traveling in high-energy accelerators. It is also easily 
demonstrated by simple thought experiments.

Speeding-Train T h ough t Experim ent: Return to Einstein’s high-speed 
railroad train seen end-on (Figure 3-2). Suppose the Earthbound observer measures 
the train to get thinner as it moves faster. Then for the Earth observer the right and left 
wheels of the train would come closer and closer together as the train speeds up, finally 
slipping off between the tracks to cause a tertible wreck. In contrast, the train observer 
regards herself as at rest and the tracks as speeding by in the opposite direction. If she

T r a n sv e rse  d im e nsio n  sa m e  f o r 
l a b o r a t o r y  a n d  r o c k e t  o b se r v e rs

WRO N G! WRO N G!

in motion -

a t  rest

— H

A LLE G E D  " E A R T H  PLO T " A LLE G E D  " TR A I N  PL O T "
FIGURE 3-2. T wo possible a l t e rn a t i v e s  { both wrong! ) i f  th e  moving t r a i n  is m e a sure d  to shrin k  
transv erse  to i ts d ire c t ion  o f  motion. The “ E a r th  p l o t ”  assumes the speeding tra in to be measured as 
getting thinner w ith increasing speed. The tra in ’s wheels would slip o/'between the tracks. The “ t r a i n  
p l o t ” of the same circumstance assumes the speeding ra i ls to he measured as getting closer together. In this 
case the wheels would slip off outside the tracks. But this is a  contradiction. Therefore the wheel separation 
— and the transverse dimensions of tra in and track — must he invariant, the same for al lfree-float observers 
moving along the track . ( I f  you think tha t the ac tua l transverse contraction might be too small to cause a  
wreck for the tra in shown, assume tha t both the wheels and the track are knife edges; the same argument sti l l 
applies.)
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Thought experiments demonstrate 
invariance of transverse dimension

measures the speeding tracks to get closer together as they move faster and faster, the 
train wheels will slip off outside the tracks, also resulting in a wreck. But this is absurd: 
the wheels cannot end up between the tracks and outside the tracks under the same 
circumstances. Conclusion: High speed leads to no measured change in transverse 
dimensions —  no observed thinning or fattening of fast objects. We are left with the 
conclusion that high relative speed affects the measuted values of longitudinal dimen-
sions but not transverse dimension: a welcome simplification!

Speeding-Pipes T h ough t Experim ent: Start with a long straight pipe. Paint 
one end with a checkerboard pattern and the other end with stripes. Cut out and 
discard the middle of the pipe, leaving only the painted ends. Now hurl the ends 
toward each other, with their cylindrical axes lying along a common line parallel to the 
direction of relative motion (Figure 3-3). Suppose that a moving object is measured to 
be thinner. Then someone riding on the checkerboard pipe will observe the striped 
pipe to pass inside her cylinder. All observers — everyone looking from the side —  will 
see a checkerboard pattern. In contrast, someone riding on the striped pipe will observe 
the checkerboard pipe to pass inside his cylinder. In this case, all observers will see a 
striped pattern. Again, this is absurd: All observers must see stripes, or all must see 
checkerboard. The only tenable conclusion is that speed has no measurable effect on 
transverse dimensions and the pipe segments will collide squarely edge on.

A simple question leads to an even more fundamental argument against the differ-
ence of transverse dimensions of a speeding object as observed by different free-float 
observers in relative motion: A bout w h a t a x is does the contraction take place?

We try to define an “axis of shrinkage’’ parallel to the direction of relative motion. 
Can we claim that a speeding pipe gets thinner by shrinking uniformly toward an 
“axis of shrinkage” lying along its center? Then what happens when two pipe 
segments move along their lengths, side by side as a pair? Does each pipe shrink 
separately, causing the clear space between them to increase? Or does the combina-
tion of both pipes contract toward the line midway between them, causing the clear 
space between them to decrease? Is the answer different if one pipe is made of lead 
and the other one of paper? Or if one pipe is entirely in our imagination?

There is no logically consistent way to define an “axis of shrinkage.’’ Given the 
direction of relative motion of two objects, we cannot select uniquely an “axis of 
shrinkage” from the infinite number of lines that lie parallel in this direction. For 
each different choice of axis a different pattern of distortions results. But this is 
logically intolerable. The only way out is to conclude that there is no transverse 
shrinkage at all (and, by a similar argument, no transverse expansion).

The above analysis leads to conclusions about events as well as about objects. A set 
of explosions occurs around the perimeter of the checkerboard pipe. More: These 
explosions occur simultaneously in this checkerboard frame. Then these events are 
simultaneous also in the striped frame. How do we know? By symmetry! For suppose 
the explosions were not simultaneous in the striped frame. Then which one of these

WRO N G!

" C H E C K ER B O A R D  PL O T "

WRO NG!

m m m

IJJJJJJJWJJJ
" S T R IP E D  PL O T "

F IG U RE 3 - 3 .  Tw o iden tica l-size  p ipe  
segments hurtle tow ard  each other 
along a  common centerline. W h a t w ill  
happen when they meet? Here are two  
possible a lterna tives (both w rong!) i f  a  
moving object is observed to shrink  
transverse to direction o f  motion. 
W hich p ipe passes inside the other? 
The im possibility o f  a  consistent a n -
sw er to th is  question leads to the con-
clusion th a t neither p ipe can he mea-
sured to change transverse dimension.
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events would occur first in the striped frame? The one on the right side of the pipe or 
the one on the left side of the pipe? But “left” and “right” cannot be distinguished by 
means of any physical effect: Each pipe is cylindrically symmetric. Moreover, space is 
the same in all directions — space is isotropic, the same to right as to left. So neither 
the event on the right side nor the event on the left side can be first. They must be 
simultaneous. The same argument can be made for events at the “top” and “bottom” 
of the pipe, and for every other pair of events on opposite sides of the pipe. Conclusion: 
If the explosions are simultaneous in the checkerboard frame, they must also be 
simultaneous in the striped frame.

We make the following summary conclusions about dimensions transverse to the 
direction of relative motion:

Dimensions of moving objects transverse to the direction of relative motion 
are measured to be the same in laboratory and rocket frames (invariance of 
transverse distance).

Two events with separation only transverse to the direction of relative 
motion and simultaneous in either laboratory or rocket frame are simulta-
neous in both.

“ Sa m e  t im e ”  a g r e e d  o n f o r 
e v e n ts se p a r a t e d  o n ly  t r a n sv e rse  
to r e la t i v e  mot io n

3.7 INVARIANCE OF THE INTERVAL 
PROVED

la b ora t ory an d rocke t o bserv ers a g re e on 
som ething im portan t

The Principle of Relativity has a major consequence. It demands that the spacetime 
interval have the same value as measured by observers in every overlapping free-float 
frame; in brief, it demands “invariance of the interval.” Proof? Plan of attack: 
Determine the separation in space and the separation in time between two events, E 
and R, in the rocket frame. Then determine the quite different space and time 
separations between the same two events as measured in a free-float laboratory frame. 
Then look for — and find— what is invariant. It is the “interval.” Now for the details 
(Figures 3-4 and 3-5).

Event E we take to be the reference event, the emission of a flash of light from the 
central laboratory and rocket reference clocks as they coincide at the zero of time 
(Section 2.6). The path of this flash is tracked by the recording clocks in the rocket 
lattice. Riding with the rocket, we examine that portion of the flash that flies straight 
“up” 3 meters to a mirror. There it reflects straight back down to the photodetector 
located at our rocket reference clock, where it is received and recorded. The act of 
reception constitutes the second event we consider. This event, R, is located at the 
rocket space origin, at the same location as the emission event E. Therefore, for the 
rocket observer, the space separation between event E and event R equals zero.

What is the time separation between events E and R in the rocket frame? The light 
travels 3 meters up to the mirror and 3 meters back down again, a total of 6 meters of 
distance. At the “standard” light speed of 1 meter of distance per meter of light-travel 
time, the flash takes a total of 6 meters of time to complete the round trip. In 
summary, for the rocket observer the event of reception, R, is separated from the event 
of emission, £, by zero meters in space and 6 meters in time.

What are the space and time separations of events E and R measured in the 
free-float laboratory frame? As measured in the laboratory, the rocket moves at high 
speed to the right (Figures 3-4 and 3-5). The rocket goes so fast that the simple

Prin c i p le  o f  Re la t iv i t y  l e a d s to 
i n v a r i a n c e  o f  sp a c e t i m e  in t e rv a l
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FINISH

time
REACHING MIRROR

FIGURE 3-4. P lo t o f  the  f l a sh  p a th  
a s  re corded in  the  labora tory  
f r a m e . Time progresses from bottom to 
top: W e l l  st a r te d :  The flash (repre �
sented as an asterisk) has been emitted 
(event Ej from a  moving rocket clock 
(shown as a  circle) tha t coincided with 
a  laboratory clock (shown as a  square). 
R e a ching m irro r and H ome 
stre tch :  The flash reaches a  mirror 
and reflects from i t . The mirror moves 
along in step w ith the rocket clock. 
F inish :  The flash is received (event 
R J back a t  the same rocket clock, which 
has moved in the laboratory frame to 
coincide with a  second laboratory 
clock. F igure 3-5 shows the trajectory 
of the same flash in three different 
free-float frames.

G r e a t e r  d is t a n c e  o f  t ra v e l 
f o r lig h t f l ash : l o n g e r t ime!

up-down track of the light in the rocket frame appears in the laboratory to have the 
profile of a tent, with its right-hand corner— the place of reception of the light— 8 
meters to the right of the starting point.

When does the event of reception, R, take place as registered in the laboratory 
frame? Note that it occurs at the time 6 meters in the rocket frame. All we know about 
everyday events urges us to say, “Why, obviously it occurs at 6 meters of time in the 
laboratory frame too.” But no. More binding than preconceived expectations are the 
demands of the Principle of Relativity. Among those demands none ranks higher than 
this: The speed of light has the standard value 1 meter of distance in 1 meter of 
light-travel time in every free-float frame.

Figure 3-6 punches us in the eye with this point: The light flash travels farther as 
recorded in the laboratory frame than as recorded in the rocket frame. The perpendic-
ular “altitude” of the mirror from the line along which the rocket reference clock 
moves has the same value in laboratory frame as in rocket frame no matter how fast the 
rocket — as shown in Section 3.6. Therefore on its slanted path toward and away from 
the mirror the flash must cover more distance in the laboratory frame than it does in 
the rocket frame. More distance covered means more time required at the “standard” 
light speed. We conclude that the time between events E and R is greater in the 
laboratory frame than in the rocket frame — a staggering result that stood physics on 
its ear when first proposed. There is no way out.

In the laboratory frame the flash has to go “up” 3 meters, as before, and “down” 
again 3 meters. But in addition it has to go 8 meters to the right: 4 meters to the right 
while rising to hit the mirror, and 4 meters more to the right while falling again to the 
receptor. The Pythagorean Theorem, applied to the right triangles of Figure 3-6, tells
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L A B O R A T O R Y PLO T

A
®  0  0  0 4 ^ 0  0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 © 0 0 0 0
__________________________

R O C K ET  PLO T

A A A A A A A A A  
A  A  A  A  A  A  
A A

A A A A A A A A 
A  A  A  A  A  A  A  

A A A

S U P ER -R O C K E T  PLO T
FIGURE 3-5. P lots o f  th e  p a t h  in  space o f  a  re f le c ted f lash o f  l igh t a s  m e a sure d  in  thre e  d i f f eren t 

f ra m e s , show ing e v ent E, emission o f  the  f l a sh , a n d  e v ent R , i ts  reception a f t e r  ref lection. Squares, 
circles, and triangles represent latticeworks of recording clocks in laboratory, rocket, and super-rocket frames, 
respectively. The super-rocket frame moves to the right w ith respect to the rocket, and w ith such relative speed 
tha t the event of reception, R, occurs to the left of the event of emission, E, as measured in the super-rocket 

frame. The reflecting mirror is fixed in the rocket, hence appears to move from left to right in the laboratory 
and from right to left in the super-rocket.

FIGURE 3-6. L abora tory  p lo t  o f  
the  p a t h  o f  the  l igh t f l a sh . The flash 
rises 3 meters while i t moves to the 
right 4  meters. Then i t f a l ls 3 meters as 
i t moves an addit iona l 4  meters to the 
right. From the Pythagorean Theorem, 
the tota l length of the flash pa th equals 
3 meters plus 5 meters or 10 meters. 
Therefore 10  meters of light-travel 
time is the separation in time between 
emission event E and reception event R 
as measured in the laboratory frame.

'• R
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Between events: No absolute time, 
but invariant interval

us that each slanted leg of the trip has length 5 meters;

(3 meters)^ +  (4 meters)^ =  (5 meters)^

Thus the total length of the trip equals 10 meters, definitely longer than the length of 
the round trip, 6 meters, as observed in the rocket frame. Moreover, the light can cover 
that slanted and greater distance only at the standard rate of 1 meter of distance in 1 
meter of light-travel time. Therefore there is no escape from saying that the time of 
reception as recorded in the laboratory frame equals 10 meters. Thus there is a great 
variance between what is recorded in the two frames (Figure 3-5, Laboratory plot and 
Rocket plot); separation in time and in space between the emission £  of a pulse of light 
and its reception R after reflection.

In spite of the difference in space separation between events £  and R and the 
difference in time lapse between these events as measured in laboratory and rocket 
frames, there exists a measure of their separation that has the same value for both 
observers. This is the interval calculated from the difference of squares of time and 
space separations (Table 3-1). For both observers the interval has the value 6 meters. 
The interval is an invariant between free-float frames.

Two central results are to be seen here, one of variance, the other of invariance. We 
discover first that typically there is not and cannot be an absolute time difference 
between two events. The difference in time depends on our choice of the free-ffoat 
frame, which inertial frame we use to record events. There is no such thing as a simple 
concept of universal and absolute separation in time.

Second, despite variance between the laboratory frame and the rocket frame in the 
values recorded for time and space separations individually, the difference between the 
squares of those separations is identical, that is, invariant with respect to choice of 
reference frame. The difference of squares obtained in this way defines the square of 
the interval. The invariant interval itself has the value 6 meters in this example.

■ < ;;]T A B L E 3 fr^

RECKO NING THE SPACETIME IN TERV AL FRO M 
ROCKET A ND LA B ORA TORY MEASUREMEN TS

Rocket
measurements i

Laboratory
measurements

Time from emission 
of the flash to its reception 
Distance from the point of

6 meters DIFFERENT! -♦ 10 meters

emission of the flash to 
its point of reception

0 meters ■<- DIFFERENT! ^ 8 meters

Square of time 
Square distance and

36 (meters)^ 100 (meters)^

subttaa — 0 (meters)^ -64  (meters)^
Result of subtraction 36 (meters)^ 36 (meters)^
This is the square of what 6 meters 6 meters
measurement?

f

SAME SPACETIME
INTERVAL
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3.8 INVARIANCE OF THE INTERVAL FOR 
A ll  FREE-FLOAT FRAMES

super-rocket observer joins the agreement

The interval between two events has the same value for a//possible relative speeds of 
overlapping free-float frames. As an example of this claim, consider a third free-float 
frame moving at a different speed with respect to the laboratory frame— a speed 
different from that of the rocket frame.

We now measure the same events of emission and reception from a “super-rocket 
ftame’’ moving faster than the tocket (but not faster than light!) along the line 
between events E and R (Figure 3-5, Super-rocket plot). For convenience we arrange 
that the tefetence clock of this frame also coincides with refetence clocks of the other 
two frames at event E.

Events E and R occur at the same place in the rocket frame. Between these two 
events the supet-tocket moves to the right with tespect to the tocket. As a result, the 
supet-tocket observer records event R as occutring to the left of the emission event. 
How far to the left? That depends on the relative speed of the super-tocket frame.

The super-rocket is not super-size; rather it has super-speed. We adjust this 
super-speed so that the reception occurs 20 meters to the left of the emission for the 
super-rocket observer. Then the flash of light that rises vertically in the rocket must 
ttavel the same 3 meters upward in the super-rocket but also 10 meters to the left as it 
slants towatd the mirtor. Hence the distance it travels to the mitror in the supet-tocket 
ftame is the length of a hypotenuse, 10.44 meters;

(3 meters)^ +  (10 meters)^ =  9 meters^ + 1 0 0  meters^ = 1 0 9  meters^
=  (10.44 meters)^

It must travel another 10.44 meters as it slants downwatd and leftwatd to the event of 
reception. The total distance ttaveled equals 20.88 meters. It follows that the total 
time lapse between E and R equals 20.88 metets of light-travel time for the super-
rocket observer.

The speed of the supet-tocket is very high. As a result the space separation between 
emission and reception is very great. But then the time separation is also very great. 
Moreovet, the magnitude of the time sepatation is petfectly tailored to the size of the 
space separation. In consequence, the particulat quantity equal to the difference of 
their squares has the value (6 meters)^, no mattet how gteat the space separation and 
time separation individually may be. For the super-rocket ftame:

Super-rocket: Same interval 
between events

(20.88 meters)^ ~  (20 meters)^ 436 meters^ ~  400 meters^ — 36 meters^ 
(6 meters)^

In spite of the difference in space separation observed in the three frames (0 meters 
for the rocket, 8 meters for the laboratory, 20 meters for the super-rocket) and the 
difference in time separation (6 meters for the rocket, 10 meters for the laboratory, 
20.88 meters for the super-rocket), the intetval between the two events has the same 
value fot all three observers:

In general; (time sepatation)^ — (space separation)^ =  (interval)^

Rocket ftame: (6 metets)^ — (0 meters)^ =  (6 meters)^

Laboratory frame: (10 meters)^ — (8 meters)^ =  (6 meters)^

Super-rocket ftame: (20.88 meters)^ — (20 metets)^ =  (6 meters)^
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FIGURE 3-6 (repea ted). Labora-
tory plot of the path of the light 
flash.

Invariance of interval from 
invariance of transverse dimension

The laboratory observer clocks the time between the flash and its reception as 10 
meters, in total disagreement with the 6 meters of timelike interval he figures between 
those two events. The observer in the super-rocket frame marks an even greater 
discrepancy, 20.88 meters of her time versus the 6 meters of timelike interval. Only 
for the rocket observer does clock time agree with interval. Why? Because only she sees 
reception at the same place as emission.

The invariance of the interval can be seen at a glance in Figure 3-6. The hypotenuse 
of the first right triangle has a length equal to half the time separation between E and 
R. Its base has a length equal to half the space separation. To say that (time 
separation)^ — (space separation)^ has a standard value, and consequently to state that 
(half the time separation)^ — (half the space separation)^ has a standard value, is 
simply to say that the altitude of this right triangle has a fixed magnitude (3 meters in 
the diagram) for rocket and all super-rocket frames, no matter how fast they move. 
And this altitude has a length equal to half the interval between these two events.

S A M P L E  P R O B L E M  3-2^
T HE (C+ M E S O N
A beam of (unstable) mesons, traveling at a 
speed of t' =  0.868, passes through two counters 9 
meters apart. The particles suffer negligible loss of 
speed and energy in passing through the counters 
but give electrical pulses that can be counted. The

SOLUTIO N

first counter records 1000 pulses (1000 passing 
particles); the second records 250 counts (250 
passing particles). This decrease arises almost en-
tirely from decay of particles in flight. Determine 
the half-life of the meson in its own rest frame.

Unstable particles of different kinds decay at different rates. By definition, the half-life of 
unstable particles of a particular species measures the particle wristwatch time during 
which —  on the average — half of the particles decay. Half of the remaining particles 
decay in an additional time lapse equal to the same half-life, and so forth. In this case, one 
quarter of the particles remain after passage from counter to counter. Therefore the 
particles that survive experience the passage of two half-lives between counter and 
counter. We make the interval between those two passages, those two events, the center 
of our attention, because it has the same value in the laboratory frame where we do our 
measuring as it does in the free-float frame of the representative particle.
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The keystone of the argument establishing the invariance of the interval between 
two events for all free-float frames? The Principle of Relativity, according to which 
there is no difference in the laws of physics between one free-float frame and another. 
This principle showed here in two very different ways. First, it said that distances at 
right angles to the direction of relative motion are recorded as of equal magnitude in 
the laboratory frame and the rocket frame (Section 3.6). Otherwise one frame could be 
distinguished from the other as the one with the shorter perpendicular distances.

Second, the Principle of Relativity demanded that the speed of light be the same in 
the laboratory frame as in the rocket frame. The speed being the same, the fact that the 
light-travel path in the laboratory frame (the hypotenuse of two triangles) is longer 
than the simple round-trip path in the rocket frame (the altitudes of these two 
triangles: up 3 meters and down again) directly implies a longer time in the laboratory 
frame than in the rocket frame.

In brief, one elementary triangle in Figure 3-6 displays four great ideas that underlie 
all of special relarivity: invariance of perpendicular distance, invariance of the speed of 
light, dependence of space and time separations upon the frame of reference, and 
invariance of the interval.

Basis of invariance of interval: 
Principle of Relativity

3.9 SUMMARY
same laws for a ll; invarian t in terval for a ll

The Princip le o f R elativity says that the laws of physics are the same in every 
inertial (free-float) reference frame (Section 3.1). This simple principle has important 
consequences. Specifically:

(separation V  
in lab I 
time /

( separation /  separation V
in lab I =  I in moving- 1 

position /  Vparticle tim e/

9 meters of distance \

( separation \   ̂
in moving- I 

particle position /

/  zero separation \  ^
I in space (in

0.868 meters of distance 1 — lo f  distance j  ~  half-lives)^ — I particle frame) 
per meter of time / \ between those

two events /

=  ( 10.368 meters 
of light-travel time

Y  _  /  9 meters y  
/ \o f  distance/

(2 half-lives)^

A little arithmetic tells us that two half-lives total 5.15 meters of light-travel time. 
Consequently the half-life itself is 2.57 meters of time or (2.57 meters)/(3.00 X 10®
meters/second) =  8.5 X 1 0 ^  second or 8.5 nanoseconds.
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1.

2.

3 .

4 .

Two events that lie along the direction of relative motion between two frames 
cannot be simultaneous as measured in both frames (relativity o f sim ulta-
neity). (Section 3-4)
An object in high-speed motion is measured to be shorter along its direction of 
motion than its p ro p e r length, measured in its rest frame (Lorentz con-
traction). (Section 3.5)
The dimensions of moving objects transverse to their direction of relative 
motion are measured to be the same, whatever the relative speed (invariance 
o f transverse distances). (Section 3.6)
Two events with separation only transverse to the direction of relative motion 
and simultaneous in either frame are simultaneous in both. (Section 3.6)

FASTER THA N LIGHT?
W e a lw a ys w an t to go f aster . Fast er than w ha t? Fast er than anything has 
g o ne b e fo re . W h a t is our g re a t est  p ossib le sp e e d , a ccord in g to the t heory of 
rela t iv i ty? The sp e e d  o f light in a vacuum! H ow d o w e know that this is the 
grea t est  p ossib le sp e e d  that w e can t ra ve l? M any lines o f e v id e n ce reach this 
conclusion . Rocket sp e e d  g re a t e r than the sp e e d  o f light would le a d  to the 
destruct ion o f the essen t ia l rela t ion b e tw een c a use a n d ef fect , a  result e x �
p lo re d in Sp ec ia l Topic: Lorentz Transform ation (esp ec i a l ly Box L-1) an d in 
Ch a p t e r 6 . In p ar t icular, w e could find a  f ra m e in which a  faster- than-lig ht  
o b jec t a rriv es b e f o re it starts! M ore o v er , in p ar t icle a c c e le ra t o rs built over 
se v e ra l d e c a d es w e h ave sp en t hu n dre ds o f millions o f d o l la rs e f fect ively 
trying to a c c e le ra t e  elec tro ns an d pro t ons to the g re a t est  p ossib le sp e e d  —  
which by ex perim en t never e x c e e ds light sp e e d .

The conclusion that no thing can m ave f ast er than light a r ises a lso  from the 
in varia n ce o f the in terval. To se e  this, let a  rock et emit two f lash es o f light a 
time t' a p a r t  as m easured in the rocket fram e . (Use a  prime to dist inguish 
rocket m easurem ents from la b o ra t o ry m easure m en ts.) In the rock et frame 
the two em issio ns occur a t the sa m e p lace : the se p ara t io n x' b e t w een them 
e q u a ls z e ro . Let f an d x b e the corresp o n d in g se p ara t io ns in time an d sp a ce  
as m easured in the la b o ra t a ry  fram e . Then the in varia n ce o f the interval tells 
us that the three quantit ies f', t, an d x a re  re la t e d by the eq ua tion

(t')2 -  (x')2 =  I t V  -  (0)2 =  -  x2

w hence

(t')2 =  f2 -  x2 (3-1)

In the la b o ra t o ry fram e the rock et is moving with som e sp e e d ; g ive this 
sp e e d  the sym bol v. The d ist ance x be t w een em issio ns is just the dist an ce that 
the rocket moves in time f  in the la b o ra t o ry f ram e . The rela t ion b e tw een
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5. The spacetime interval between two events is invariant— it has the same 
value in laboratory and rocket frames (Sections 3-7 and 3.8):

L a b o r a to r y  L a b o r a to r y

(interval)^ =  ( V - f  VVseparanon/ \separation/

R o c k e t  R o c k e t

_  /  time y  _  /  space y  
Vseparation/ \separation/

6. In any free-float frame, no object moves with a speed greater than the speed of 
light (Box 3-3).

dist ance , time, an d sp e e d  is

x  =  Vt (3-2)

Substitu te this into eq ua tio n (3-1) to ob tain (t')^ =  — (vt)^  =  [1 — v^], or

f  =  t { ]  — v^ )''2 (3-3)

N o w , V is the sp e e d  o f the rocket . H ow la rg e can that sp e e d  b e? Equation 
(3-3) m akes se nse for a n y rocket sp e e d  less than the sp e e d  of light, or when v 
has a  v a lue less than one .

Su p p ose w e try to force the rocket to move f ast er than the sp e e d  of light. If w e 
should su ccee d , v would have a  value g re a t e r than o ne . Then v  ̂a lso  would 
have a  value g re a t e r than one . But in this c ase  the e x p ressio n 1 — v  ̂would 
h ave a  n eg a tive value an d its sq u are roo t would h ave no p hysical meaning . 
In a formal mathematical se nse , the rocke t time f  would b e an im aginary 
number for the c ase  of rocke t sp e e d  g re a t e r than the sp e e d  o f light. But 
clocks d o not re a d  im aginary time; they re a d  rea l t im e—- t h r e e  hours, for 
e x a m ple . Th ere fo re a rock et sp e e d  g re a t e r than the sp e e d  of light le a ds to 
an im p ossib le co nse q u e n ce .

Equation (3-3) d o es not forbid a  rocke t to g o as c l ose to the sp e e d  o f light as 
w e wish , as long as this sp e e d  rem ains less than the sp e e d  o f light. For v very  
c l ose to the sp e e d  o f light, eq ua tio n (3-3) tells us that the rocke t time can be 
very much sm aller than the la b o ra t o ry time. N o w su p p ose that emission of 
the first f lash occurs when the rock et p asses Earth on its ou tw ard trip to a 
distont st ar . Let emission o f the seco n d flash occur as the rocke t a r r i v e s  a t that 
distant st ar . N o matter how long the la b o ra t o ry time f b e tw een t hese two 
even ts, w e can find a  rock et sp e e d , v, such that the rock et time t ' is as small as 
w e wish . This means that in princip le w e can go to a n y remote star in as short a 
rocke t time as w e wan t . In brie f , al though our sp e e d  is limited to less than the 
sp e e d  o f light, the d ist ance w e can travel in a lifetime has no limitation. W e  
can g o an y w h ere! This result is e x p lo re d further in Ch a p t e r 4.
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D OES A M O VIN G CLO CK R E A L L Y
“ RUN SLO W ” ?

You k e e p  s a y i n g ,  " T h e  t i m e  b e t w e e n  c l o c k - t i c k s is s h o r t e r  a s  M E A S U R E D  in  t h e  

r e s t  f r a m e  o f  t h e  c l o c k  t h a n  a s  M E A S U R E D  in  a  f r a m e  i n  w h i c h  t h e  c l o c k  is 

m o v i n g . "  I a m  i n t e r e s t e d  in  r e a l i t y ,  n o t  s o m e o n e 's  m e a s u r e m e n t s .  T e l l  m e  w h a t  

r e a l l y  h a p p e n s !

'  W h a t is rea li t y? Yo u will h ave your own opinion an d sp ecula t io ns. H ere w e  
p ose two re la t e d scien tific questions w h ose answ ers may help yo u in forming 
yo ur opinion .

A re  d i f f e re n ces in clock r a t es re a l l y  v e r i f ie d  b y e x p e r i m e n t?
Dif ferent v a lu es o f the time b e t w een two even ts as o bse rv e d  in dif ferent 
f ra m es? A bsolu te ly! Energe tic p ar t ic les slam into solid ta rg e ts in a c c e le ra t o rs 
all o ver the w orld , sp ray in g f orw ard new ly cre a t e d  p ar t ic les, som e o f which 
d e c a y  in v ery short times as m easure d in their rest f ra m es. But th ese “ sh ort �
li v e d ” p ar t ic les survive much lo n g er in the la b o ra t o ry f ra m e as they streak  
from ta rg e t to d e tec to r. In c o nse q u e n ce , the d e t ec t o r re ce iv es a  much la rg er 
fract ion o f the u n d e ca y e d  fast-moving p ar t ic les than wo uld b e p re d ic te d  
from their d e c a y  times m easure d a t rest . This result has b ee n teste d thou �
sa n ds o f times with m any dif ferent kinds o f p ar t ic les. Such ex perim en ts 
carr ie d  out o v er d e c a d es le a d  to d e p e n d a b le , consist ent , r e p e a t a b le  r e �
sults. As f a r as w e can tell, they a r e  correc t , true , an d re lia b le an d canno t  
ef fect ively b e d e n ie d . If that is w ha t you p erso n a lly  m ean b y " r e a l , ”  then 
t hese results a re  “ w ha t re a lly  h a p p e ns. ”

D o es so m et hing a b o u t a  clo ck re a l l y  ch a n g e w h e n  it m o v es, result ing in 
the o bse rv e d  ch a n g e in t ick r a t e ?
A bso lu t e ly not! H ere is why: W h e th er a f ree- f lo a t clock is a t rest or in motion 
in the fram e o f the o bse rv e r is con trolle d b y the o bse rv e r . Yo u w an t the clock

REFERENCES
Introductory quote; A. Sommerfeld, Naturwissenschaftliche Rundschau, Volume 
1, pages 9 7 -1 0 0 , reprinted in Gesammelte Schriften (Vieweg, Braunschweig, 
1968), Volume IV, pages 640-643 .

Galileo quote. Section 3.1; Galileo Galilei, Dialogue Concerning the Two Chief 
World Systems— Ptolemaic and Copemican, first published February 1632; the 
translation quoted here is by Stillman Drake (University of California Press, 
Berkeley, 1962), pages 186ff. Galileo’s writings, along with those of Dante, by 
reason of their strength and aptness, are treasures of human thought, studied 
today in Italy by secondary school students as part of a great literary heritage.

Einstein quote. Box 3-1; Albert Einstein, “On the Electrodynamics of Moving 
Bodies,’’ Annalen derPhysik, Volume 17, pages 8 9 1-921  (1905), translated by 
Arthur I. Miller in Albert Einstein’s Special Theory of Relativity (Addison- 
Wesley, Reading, Mass., 1981), page 392.
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to be a t rest? M ove a lo n g with it! N o w do you wont the clock to m o ve? Simply 
ch a n g e your own veloci ty! This is true ev en when you an d the clock a re  
se p a ra t e d  b y the dia m e ter o f the so la r system . The magnitude o f the clock's 
st e a d y veloci t y is en t irely under yo ur control. Th ere fo re the time b e t w een its 
t icks as m easure d in your fram e is de term ined by your ac t ions. H ow can your 
ch a n g e o f motion af fect the inner mechanism of a distant clo ck? It canno t an d  
d o es not.

Every time you ch a n g e your motion on Earth —  an d even when you sit do wn , 
let ting the direct ion o f your veloci t y ch a n g e as Earth ro ta tes —  you chan g e  
the ra t e a t which the p la ne ts revo lve aro un d Sun, as m easure d in yo ur frame . 
(You a lso  ch a n g e the sh a p e o f p la n e t ary orbits, con tract ing them alo n g the 
direct ion o f your motion re la t ive to Sun.) Do you think this ch a n g e on yo ur 
veloci t y rea lly a f fec ts the w ork in gs o f the “ c l o ck ”  w e call the so la r syst e m? If 
so , w ha t ab o u t a p erso n who sits down on the o ther sid e o f Eart h? That 
p erso n moves in the o p p osit e direct ion aro un d the ce n ter o f Earth , so the 
results a re  dif ferent from yo urs. A re e a ch o f you having a dif ferent e f fect on 
the so la r syst e m? A nd a r e  there still d if ferent e f fects —  d if ferent so lar-syste m  
clocks —  for o bse rv e rs who could in princip le be sca t t ere d on o ther p la n e ts?

W e co nclu de that f ree- f lo a t motion d o es not a f fect the structure or o p era t io n  
of clocks (or ro ds). If this is w ha t you mean by rea li t y , then there a re  r e a l l y  no 
such ch a n g es due to uniform motion.

Is there so m e unity behind t hese conflict ing m easure m en ts o f time an d sp a c e ? 
Yes! The in terval: the p ro p er time (wristwatch. time) b e t w een ticks of a clock as 
m easure d in a fram e in which ticks occur a t the sa m e p la ce , in which the clock 
is a t rest . Pro p er time can a lso  b e ca lc u la t e d by all f ree- f lo a t o bserv e rs, 
w h a t ev er their sta te of motion, an d all a g re e  on its v a lue . Behind the con fus �
ing clut ter o f conflict ing m easure m en ts st an ds the simple, consistent , p o w er �
ful v ie w p ro v id e d by sp ace ti m e .
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CHAPTER 3 EXERCISES

PRACTICE
3-1 re la t iv i t y  an d swim ming
The idea here is to illustrate how remarkable is the 
invariance of the speed of light (light speed same in all 
free-float frames) by contrasting it with the case of a 
swimmer making her way through water.

Light goes through space at 3 X 10® meters/sec- 
ond, and the swimmer goes through the water at 1 
meter/second. “But how can there otherwise be any 
difference?” one at first asks oneself.

For a light flash to go down the length of a 30- 
meter spaceship and back again takes

time =  (distance)/(speed)
=  2 X (30 meters)/(3 X 10® meters/second) 
=  2 X 10~^ second

as measured in the spaceship, regardless of whether 
the ship is stationary at the spaceport or is zooming 
past it at high speed.

Check how very different the story is for the swim-
mer plowing along at 1 meter/second with respect to 
the water.

a  How long does it take her to swim down the 
length of a 30-meter pool and back again?

b  How long does it take her to swim from float A 
to float B and back again when the two floats, A  and 
B, are still 30 meters apart, but now are being towed 
through a lake at 1/3 meter/second? Discussion: 
When the swimmer is swimming in the same direc-
tion in which the floats are being towed, what is her 
speed relative to the floats? And how great is the 
distance she has to travel expressed in the “frame of 
reference” of the floats? So how long does it take to 
travel that leg of her trip? Then consider the same 
three questions for the return trip.

c Is it true that the total time from A to 6  and 
back again is independent of the reference system 
(“stationary” pool ends vs. moving floats)?

d  Express in the cleanest, clearest, sharpest one- 
sentence formulation you can the difference between 
what happens for the swimmer and what happens for 
a light flash.

3-2 Einstein p u zz le r
When Albert Einstein was a boy of 16, he mulled 
over the following puzzler: A runner looks at herself 
in a mirror that she holds at arm’s length in front of

her. If she runs with nearly the speed of light, will she 
be able to see herself in the mirror? Analyze this 
question using the Principle of Relativity.

3-3 construction of clocks
For the measurement of time, we have made no dis-
tinction among spring clocks, quartz crystal clocks, 
biological clocks (aging), atomic clocks, radioactive 
clocks, and a clock in which the ticking element is a 
pulse of light bouncing back and forth between two 
mirrors (Figure 1-3). Let all these clocks be adjusted 
by the laboratory observer to run at the same rate 
when at rest in the laboratory. Now ler the clocks all 
be accelerated gently to a high speed in a rocket, 
which then turns off irs engines. Make a simple bur 
powerful argument that the free-float rocket observer 
will also measure these different clocks all to run ar 
the same rate as one another. Does it follow that the 
(common) clock rate of these clocks measuted by the 
rocket observer is rhe same as their (common) rate 
measured by rhe laboratory observer as they pass by in 
the rocket?

3-4 the Princip le of Re la t iv i t y
Two overlapping free-float frames are in uniform 
relative motion. On the following list, mark with a 
“yes” the quantities that must necessarily be the same 
as measured in the two frames. Mark with a “no” the 
quantities that are not necessarily the same as mea-
sured in the two frames.

a  time it takes for light to go one meter of dis-
tance in a vacuum

b  spacetime interval between two events 
c kinetic energy of an electron 
d value of the mass of the electron 
e  value of the magnetic field at a given point 
f  distance between two events 
g structute of the DNA molecule 
h time rate of change of momentum of a neutron

3-5 m any unpo w ered rocke ts
In rhe laboratory frame, event 1 occurs at x =  0 
light-years, / =  0 years. Event 2 occurs at x =  6 
light-years, /  =  10 years. In all rocket frames, event 1 
also occurs at the position 0 light-years and the time 0 
years. They- and z-coordinates of both events are zero 
in both frames.

a  In rocker frame A, event 2 occurs ar rime t' =  
14 years. At what position x ' will event 2 occur in rhis 
frame?
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b  In rocket frame B, event 2 occurs at position x"  
=  5 light-years. At what time f  will event 2 occur in 
this frame?

c How fast must rocket frame C move if events 1 
and 2 occur at the same place in this rocket frame?

d  What is the time between events 1 and 2 in 
rocket frame C of part c?

3-6 down w ith re la t iv i t y!
Mr. Van Dam is an intelligent and reasonable man 
with a knowledge of high school physics. He has the 
following objections to the theory of relativity. An-
swer each of Mr. Van Dam’s objections decisively — 
without criticizing him. If you wish, you may present 
a single connected account of how and why one is 
driven to relativity, in which these objections are all 
answered.

a  ‘ ‘Observer A says that B’s clock goes slow, and 
observer B says that A’s clock goes slow. This is a 
logical contradiction. Therefore relativity should be 
abandoned.”

b  ‘‘Observer A says that B’s meter sticks are 
contracted along their direction of relative motion, 
and observer B says that A’s meter sticks are con-
tracted. This is a logical contradiction. Therefore rela-
tivity should be abandoned.”

c ‘ ‘ Relativity does not even have a unique way to 
define space and time coordinates for the instanta-
neous position of an object. Laboratory and rocket 
observers typically record different coordinates for this 
position and time. Therefore anything relativity says 
about the velocity of the object (and hence about its 
motion) is without meaning.”

d ‘‘Relativity postulates that light travels with a 
standard speed regardless of the free-float frame from 
which its progress is measured. This posmlate is cer-
tainly wrong. Anybody with common sense knows 
that travel at high speed in the direction of a receding 
light pulse will decrease the speed with which the 
pulse recedes. Hence a flash of light cannot have the 
same speed for observers in relative motion. With this 
disproof of the basic postulate, all of relativity col-
lapses.”

e  ‘‘There isn’t a single experimental test of the 
results of special relativity.”

f ‘‘Relativity offers no way to describe an event 
without coordinates —  and no way to speak about 
coordinates without referring to one or another par-
ticular reference frame. However, physical events 
have an existence independent of all choice of coordi-
nates and all choice of reference frame. Hence 
relativity— with its coordinates and reference frames 
—  cannot provide a valid description of these 
events.”

g ‘‘Relativityis preoccupied with how we observe 
things, not what is really happening. Hence it is not a 
scientific theory, since science deals with reality.”

PROBLEMS
3-7 sp ace w ar
Two rockets of equal rest length are passing ‘‘head 
on” at relativistic speeds, as shown in the figure (left). 
Observer o has a gun in the tail of her rocket pointing 
perpendicular to the direction of relative motion

EXERCISE 3-7 . U f f . Two rocket ships passing a t high speed. C enter:  In the frame of o one expects a  bullet 
fired when a coincides with a.' to miss the other ship. R ight :  In the frame of o' one expects a  bullet fired when 
a coincides w ith a! to h i t the other ship.
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(center). She fires the gun when points a and a' 
coincide. In her frame the other rocket ship is Lorentz 
contracted. Therefore o expects her bullet to miss the 
other rocket. But in the frame of the other observer o' 
it is the rocket ship of o that is measured to be Lorentz 
contracted (right). Therefore when points a and a' 
coincide, observer o' should observe a hit.

Does the bullet actually hit or miss? Pinpoint the 
looseness of the language used to state the problem 
and the error in one figure. Show that your argument 
is consistent with the results of the Train Paradox 
(Section 3.4).

3-8 <£erenk< id ia li i
No particle has been observed to travel faster than the 
speed of light in a vacuum. However particles have 
been observed that travel in a material medium faster 
than the speed of light in that medium. When a 
charged particle moves through a medium faster than 
light moves in that medium, it radiates coherent light 
in a cone whose axis lies along the path of the particle. 
(Note the rough similarity to waves created by a 
motorboat speeding across calm water and the more 
exact similarity to the “cone of sonic boom” created 
by a supersonic aircraft.) This is called Cerenkov radi-
ation (Russian C is pronounced as “ch”). Let v be the 
speed of the particle in the medium and be the 
speed of light in the medium.

a  From this information use the first figure to 
show that the half-angle 0 ,  of the light cone is given 
by the expression

cos 0  =

b  Consider the plastic with the trade name Lu- 
cite, for which v̂ ^̂  ̂ =  2 /3 . What is the minimum 
velocity that a charged particle can have if it is to 
produce Cerenkov radiation in Lucite? W hat is the 
maximum angle 0  at which Cerenkov radiation can 
be produced in Lucite? Measurement of the angle 
provides a good way to measure the velocity of the 
particle.

C In water the speed of light is approximately 
flight “ 0 . 7 5 .  Answer the questions of part b  for the 
case of water. See the second figure for an application 
of Cerenkov radiation in water.

3-9 a b erra t io n of starlig h t
A star lies in a direction generally perpendicular to 
Earth’s direction of motion around Sun. Because of 
Earth’s motion, the star appears to an Earth observer 
to lie in a slightly different direction than it would

EXERCISE 3-8, first f igure . Calculation of Cerenkov angle 0 .

EXERCISE 3-8, second figure. Use of Cerenkov radiation for 
indirect detection of neutrinos in the Deep Underwater Muon and 
Neutrino Detector (D U M A N D ) 3 0  kilometers off Keahole Point on 
the island of H a w a i i . Neutrinos have no electric charge and their 
mass, i f  any, has so f a r  escaped detection (Box 8-1 ) . Neutrinos 
interact extremely weakly w ith matter, passing through E arth with 
almost no collisions. Indeed, the D U M A N D  detector array selects 
for ana lysis only neutrinos tha t come upward through E arth. In this 
way E arth itse lf acts as a  shield to eliminate a l l  other cosmic-ray 
particles.

What are possible sources for these neutrinos? Theory predicts the 
emission of very high-energy { greater than 1 0 ’^ electron-volt) neu�
trinos from matter plunging toward a  black hole. Black holes may be 
the energy sources for extra-bright ga lactic nuclei and for quasars 
— small, distant, enigmatic objects shining w ith the light of 
hundreds of galaxies (Section 9 .8 ) . Information about conditions 
deep w ithin these astronomical structures may be carried by neu�
trinos as they pierce E arth and trave l upward through the D U �
M A N D  detector array .

In a  rare event, a  neutrino moving through the ocean slams into 
one of the quarks tha t make up a  proton or a  neutron in, say, an 
oxygen nucleus in the water, creating a  burst of particles. A ll of 
these part icles are quickly absorbed by the surrounding w ater except 
a  stable negatively charged muon, 2 0 1  times the mass of the electron 
(thus sometimes called a  “f a t  electron”). This muon streaks through 
the water in the same direction as the neutrino tha t created i t  and a t  
a  speed greater than tha t of light in water, thus emitting Cerenkov 
radiation. The Cerenkov radiation is detected by photomultiplier 
tubes in an array anchored to the ocean floor.

Photomultipliers are strung along 9  vertical cables, 8  cables 
spaced around a  circle 100  meters in diameter on the ocean floor, the 
ninth cable rising from the center of the circle. Each cable is 3 3 5  
meters long and holds 2 4  glass spheres positioned 10  meters apart on 
the top 2 3 0  meters of its length. There are no detectors on the bottom 
n o  meters, in order to avoid any cloud ofsediments from the bottom. 
Above the bottom, the water is so clear and modem photodetectors so 
sensitive tha t Cerenkov radiation can he detected from a  muon tha t 
passes within 4 0  meters of a  detector.

Photomultipliers in the glass spheres detect Cerenkov radiation 
from the passing muons, transmitt ing this signa l through under�
water optical fibers to computers on the nearby island of H aw a i i. 
The computers select for examination only those events in which ( I )  
several optical sensors detect hursts tha t are (2 ) within 4 0  meters or 
so of a  stra ight line, (3 ) spaced in time to show tha t the part ic le is 
moving a t  essentially the speed of light in a  vacuum, and (4 ) from a  
part ic le moving upward through the water. A system of sonar bea �
cons and hydrophones tracks the locations of the photomultipliers as 
the strings sway w ith the slow ocean currents. As a  result, the 
direction of motion of the original neutrino can be recorded to an 
accuracy of one degree.

The D U M A N D  fac i l i ty  is designed to create a  new sky map of 
neutrino sources to supplement our knowledge of the heavens, so f a r  
obtained primari ly from the electromagnetic spectrum (radio, infra �
red, optical, ultraviolet. X -ray , gamma ray).
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EXERCISE 3-9. Aberration of starl ight. Not to scale.

appear to an observer at rest relative to Sun. This 
effect is called aberra tion . Using the diagram, find 
this apparent difference of direction.

a  Find a trigonometric expression for the aberra-
tion angle Xj/ shown in the figure.

b  Evaluate your expression using the speed of 
Earth around Sun, =  30 kilometers/second.
Find the answer in radians and in seconds of arc. (One 
degree equals 60 minutes of arc; one minute equals 
60 seconds of arc.) This change in apparent position 
can be detected with sensitive equipment.

c The nonrelativistic answer to this problem —  
the answer using nonrelativistic physics— is tan Xj/ =  
*'Earth meters/metet). Do you think that the exper-
imental difference between relativistic and nonrela-
tivistic answers for stellar aberration observed from 
Earth can be the basis of a crucial experiment to decide 
between the correctness of the two theories?

Discussion: O f course we cannot climb off Earth 
and view the star from the Sun frame. But Earth 
reverses direction every six months (with respect to 
what?), so light from a “transverse star” viewed in, 
say, July will appear to be shifted through twice the 
aberration angle calculated in part b compared with 
the light from the same star in January. New ques-
tion: Since the background of stars behind the one 
under observation also shifts due to aberration, how 
can the effect be measured at all?

d A rocket in orbit around Earth suddenly 
changes its velocity from a very small fraction of the 
speed of light to t' =  0.5 with respect to Sun, moving 
in the same direction as Earth is moving around Sun. 
In what direction will the rocket astronaut now see the 
star of parts a and b?
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3 -1 0  the e x p an d in g u n iverse
a  A giant bomb explodes in otherwise empty 

space. W hat is the nature of the motion of one frag-
ment relative to another? And how can this relative 
motion be detected? Discussion: Imagine each frag-
ment equipped with a beacon that gives off flashes of 
light at regular, known intervals At  of time as mea-
sured in its own frame of reference (proper time!). 
Knowing this interval between flashes, what method 
of detection can an observer on one fragment employ 
to determine the velocity v— relative to her —  of any 
other fragment? Assume that she uses, in making this 
determination, (1) the known proper time At  be-
tween flashes and (2) the time between the
arrival of consecutive flashes at her position. (This is 
not equal to the time A/ in her frame between the 
emission of the two flashes from the receding emitter; 
see the figure.) Derive a formula for v in terms of 
proper time lapse At  and A/^q,n„„. How will the 
measured recession velocity depend on the distance 
from one’s own fragment to the fragment at which 
one is looking? Hint: In any given time in any given 
frame, fragments evidently travel distances in that 
frame from the point of explosion that are in direct 
proportion to their velocities in that frame.

b  How can observation of the light from stars be 
used to verify that the universe is expanding? Dis-
cussion: Atoms in hot stars give off light of different 
frequencies characteristic of these atoms (“spectral 
lines’’). The observed period of the light in each spec-
tral line from starlight can be measured on Earth. 
From the pattern of spectral lines the kind of atom 
emitting the light can be identified. The same kind of 
atom can then be excited in the laboratory to emit 
light while at rest and the ptoper period of the light in 
any spectral line can be measured. Use the results of

part a to describe how the observed period of light in 
one spectral line from starlight can be compared to the 
proper period of light in the same spectral line from 
atoms at rest in the laboratory to give the velocity of 
recession of the star that emits the light. This observed 
change in period due to the velocity of the source is 
called the Doppler shift. (For a more detailed treat-
ment of Doppler shift, see the exercises for Chapters 5 
and 8.) If the universe began in a gigantic explosion, 
how must the observed velocities of recession of dif-
ferent stars at different distances compare with one 
another? Slowing down during expansion —  by grav-
itational attraction or otherwise— is to be neglected 
here but is considered in more complete treatments.

c The brightest steadily shining objects in the 
heavens are called quasars, which stands for “quasi- 
stellar objects.’’ A single quasar emits more than 100 
times the light of our entire galaxy. One possible 
source of quasar energy is the gravitational energy 
released as material falls into a black hole (Section 
9.8). Because they are so bright, quasars can be ob-
served at great distances. As of 1991, the greatest 
observed quasar red shift A t  has the value
5.9. According to the theory of this exercise, what is 
the velocity of recession of this quasar, as a fraction of 
the speed of light?

3-11 la w  off ad d it io n off 
ve lo c i t ies

In a spacebus a bullet shoots forwatd with speed 3 /4  
that of light as measured by travelers in the bus. The 
spacebus moves forward with speed 3/ 4  light speed 
as measured by Earth observers. How fast does the 
bullet move as measured by Earth observers: 3 /4  +  
3 /4  =  6 /4  =  1.5 times the speed of light? No! Why 
not? Because (1) special relativity ptedicts that noth-

EXERCISE 3-10. Calculation of the time between arri v a l a t observer of consecutive flashes from
receding emitter. L ight moves one meter of distance in one meter of time, so lines showing motion of light are 
ti lted a t  43 °  from the vertical.
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ing can travel faster than light, and (2) hundreds of 
millions of dollars have been spent accelerating parti-
cles (“bullets”) to the fastest possible speed without 
anyone detecting a single particle that moves faster 
than light in a vacuum. Then where is the flaw in our 
addition of velocities? And what is the correct law of 
addition of velocities? These questions are answered in 
this exercise.

a First use Earth observers to record the mo-
tions of the spacebus (length L measured in the Earth 
frame, speed and the streaking bullet (speed 
'̂bullet)- The bullet starts at the back of the bus. To 

give it some competition, let a light flash (speed = 
1) race the bullet from the back of the bus toward 
the front. The light flash wins, of course, reaching 
the front of the bus in time f̂orward is also
equal to the distance that the light travels in this 
time. Show that this distance (measured in the Earth 
frame) equals the length of the bus plus the distance 
the bus travels in the same time;

frame and the bullet speed, call it (with a
prime), as measured in the spacebus frame. The times 
given in parts a, b, and c are of no use to this end. 
Worse, we already know that times between events 
are typically different as measured in the spacebus 
frame than times between the same events measured 
in the Earth frame. So get rid of these times! More-
over, the Lorentz-contracted length L of the spacebus 
itself as measured in the Earth frame will be different 
from its rest length measured in the bus frame (Sec-
tion 3.5). So get rid of L as well. Equations (1), (2), 
and (3) can be treated as three equations in the three 
unknowns /fô ard- Aackward> ^nd L. Substitute equa-
tions for the times (1) and (2) into equation (3). 
Lucky us: The symbol L cancels out of the result. 
Show that this result can be written

/  =
(1 ~  ^̂ buUet) (1 +  y,,i) 

(1 +  i'buUet) (1 “  «"rel)
(4 )

^forward ^  ^rel ^forward ^forward 1
( 1)

b In order to rub in its advantage over the bul-
let, the light flash reflects from the front of the bus 
and moves backward until, after an additional time 
b̂ackward! tejoios the forward-plodding bullet. This 

meeting takes place next to the seat occupied by 
Fred, who sits a distance fL  behind the front of the 
bus, where /  is a fraction of the bus length L. Show 
that for this leg of the trip the Earth-measured dis-
tance /backward traveled by the light flash can also be 
expressed as

^backward ^rel ^backward

fL
^backward

\ V,rel

C The light flash has moved forward and then 
backward with respect to Earth. What is the net 
forwatd distance coveted by the light flash at the 
instant it tejoins the bullet? Equate this with the for-
ward distance moved by the bullet (at speed t̂ buU«) to 
obtain the equation

/'bulletf^forward ^backward * forward

or

( 1  ^bullet^ ^backward ^ ^ ^bullet) ^forward

e  Now repeat the development of parts a 
through d  for the spacebus frame, with respect to 
which the spacebus has its rest length L' and the 
bullet has speed t̂ b̂uu« (both with primes). Show that 
the result is:

/  =
(  f  bullet)

(1 +  /''buUet)
(5 )

Discussion: Instead of working hard, work 
smart! Why not use the old equations (1) through (4) 
for the spacebus frame? Because there is no relative 
velocity in the spacebus frame; the spacebus is at 
rest in its own frame! No problem: Set =  0 in 
equation (4), replace «̂buU« by /̂ b̂uoiet ^nd obtain equa-
tion (5) directly from equation (4). If this is too big a 
step, carry out the derivation from the beginning in 
the spacebus frame.

f  Do the two fractions/in equations (4) and (5) 
have the same value? In equation (4) the number /  
locates Fred’s seat in the bus as a fraction of the total 
length of the bus in the Earth frame. In equation (5) 
the number/locates Fred’s seat in the bus as a fraction 
of the total length of the bus in the bus frame. But this 
fraction must be the same: Fred cannot be halfway 
back in the Earth frame and, say, three quarters of the 
way back in the spacebus frame. Equate the two 
expressions for/given in equations (4) and (5) and 
solve for to obtain the Law of Addition of 
Velocities:

d What are we after? We want a relation be-
tween the bullet speed t'buUet measured in the Earth / ’bullet

bullet /'rel

1 +
( 6 )

bullet ^rel
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g Explore some consequences of the Law of Ad-
dition of Velocities.

(1) An express bus on Earth moves at 108 
kilometers/hour (approximately 67 miles/ 
hour or 30 meters per second). A bullet moves 
forward with speed 600 meters/second with 
respect to the bus. What are the values of 
and t'̂ buUet in meters/meter? What is the value 
of their product in the denominator of equa-
tion (6)? Does this product of speeds increase 
the value of the denominator significantly over 
the value unity? Therefore what approximate 
form does equation (6) take for everyday 
speeds? Is this the form you would expect from 
your experience?

(2) Analyze the example that began this exercise: 
Speed of bullet with respect to spacebus 
t̂ 'buUet ~  3/4; speed of spacebus with respect
to Earth : re l 3/4. What is the speed of the
bullet measured by Earth observers?

(3) Why stop with bullets that saunter along at 
less than the speed of light? Let the bullet itself 
be a flash of light. Then the bullet speed as
measuted in the bus is r'̂ buUet “  1 ■ For “"rel
3 /4 , with what speed does this light flash 
move as measured in the Earth frame? Is this 
what you expect from the Principle of Relativ-
ity?

(4) Suppose a light flash is launched from the 
front of the bus directed toward the back 
(j'̂ bouet ~  ~  What is the velocity of this 
light flash measured in the Earth frame? Is this 
what you expect from the Principle of Relativ-
ity?

Reference: N . David Mermin, American Journal of Physics, Volume 
51, pages 1 1 3 0-1131  (1983).

3 -12 M ichelso n—M orley 
exp erim en t

a  An airplane moves with air speed c (not the 
speed of light) from point A  to point B on Earth. A 
stiff wind of speed p  is blowing from B toward A. (In 
this exercise only, the symbol v stands for velocity in 
conventional units, for example meters/second.) 
Show that the time for a round trip from A to B and 
back to A  under these circumstances is greater by a 
factor 1/(1 — v'^/c^) than the corresponding round 
trip time in still air. Paradox: The wind helps on one 
leg of the flight as well as hinders on the other. Why, 
therefore, is the round-trip time not the same in the 
presence of wind as in still air? Give a simple physical 
reason for this difference. What happens when the 
wind speed is nearly equal to the speed of the airplane?

b  The same airplane now makes a round trip 
between A  and C. The distance between A  and C is 
the same as the distance from A  to 6, but the line from 
A to C is perpendiculat to the line from A to 6, so that 
in moving between A and C the plane flies across the 
wind. Show that the round-trip time between A and 
C under these circumstances is greater by a factor 
1/(1 — rd/f2)i/2 than the corresponding round-trip 
time in still air.

c Two airplanes with the same air speed c start 
from A at the same time. One travels from A to B and 
back to A, flying first against and then with the wind 
(wind speed v). The other travels from A to C and 
back to A, flying across the wind. Which one will 
arrive home first, and what will be the difference in 
their arrival times? Using the first two tetms of the 
binomial theorem.

(1 4-z)” ~  1 -f nz for |z |«  1

show that if v «  c, then an approximate expression 
for this time difference is A/ ~  {L/2c){v/cY, where L 
is the round-trip distance between A and B (and 
between A and C).

d The South Pole Air Station is the supply depot 
for research huts on a circle of 300-kilometer radius 
centered on the air station. Every Monday many sup-
ply planes start simultaneously from the station and 
fly radially in all directions at the same altitude. Each 
plane drops supplies and mail to one of the research 
huts and flies directly home. A Fussbudget with a 
stopwatch stands on the hill overlooking the air sta-
tion. She notices that the planes do not all return at the 
same time. This discrepancy perplexes her because she 
knows from careful measurement that (1) the dis-
tance from the air station to every research hut is the 
same, (2) every plane flies with the same air speed as 
every other plane —  300 kilom eters/hour —  and (3) 
every plane travels in a straight line over the ground 
from station to hut and back. The Fussbudget finally 
decides that the discrepancy is due to the wind at the 
high altitude at which the planes fly. With her stop-
watch she measures the time from the return of the 
first plane to the return of the last plane to be 4 
seconds. What is the wind speed at the altitude where 
the planes fly? What can the Fussbudget say about 
the direction of this wind?

e  In their famous experiment Michelson and 
Morley attempted to detect the so-called e th er d rift 
—  the motion of Earth through the “ether,” with 
respect to which light was supposed to have the ve-
locity c. They compared the round-trip times for light 
to travel equal distances parallel and perpendicular to 
the direction of motion of Earth around Sun. They 
reflected the light back and forth between nearly



EXERCISE 3-12 MICHELSON - MORLEY EXPERIMENT 8 5

parallel mirrors. (This would correspond to part c if 
each airplane made repeated round trips.) By this 
means they were able to use a total round-trip length 
of 22 meters for each path. If the “ether” is at rest 
with respect to Sun, and if Earth moves at 30 X 10  ̂
meters/second in its path around Sun, what is the 
approximate difference in time of return between 
light flashes that are emitted simultaneously and 
travel along the two perpendicular paths? Even with 
the instruments of today, the difference predicted by 
the ether-drift hypothesis would be too small to mea-
sure directly, and the following method was used 
instead.

f  The original Michelson -  Morley interferome-
ter is diagrammed in the figure. Nearly monochro-
matic light (light of a single frequency) enters through 
the lens at a. Some of the light is reflected by the 
half-silvered mirror at b and the rest of the light 
continues toward d. Both beams are reflected back 
and forth until they reach mirrors e and e-̂  respectively, 
where each beam is reflected back on itself and re-

traces its path to mirror b. At mirror b parts of each 
beam combine to enter telescope /  together. The 
transparent piece of glass at c, of the same dimensions 
as the half-silvered mirror b, is inserted so that both 
beams pass the same number of times (three times) 
through this thickness of glass on their way to tele-
scope/. Suppose that the perpendicular path lengths 
are exactly equal and the instrument is at rest with 
respect to the ether. Then monochromatic light from 
the two paths that leave mirror h in some relative 
phase will return to mirror b in the same phase. Under 
these circumstances the waves entering telescope/will 
add crest to crest and the image in this telescope will 
be bright. On the other hand, if one of the beams has 
been delayed a time corresponding to one half period 
of the light, then it will arrive at mitror b one half 
period later and the waves entering the telescope will 
cancel (crest to trough), so the image in the telescope 
will be dark. If one beam is retarded a time corre-
sponding to one whole petiod, the telescope image 
will be bright, and so forth. What time corresponds to

E X ER C ISE 3 - 1 2 .  M ichelson -  Morley interferometer mounted on a  ro ta ting  marble slab.
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one period of the light? Michelson and Morley used 
sodium light of wavelength 589 nanometets (one 
nanometer is equal to 10“  ̂metet). Use the equations 
fX  =  c and / =  1 / T  that relate frequenq^/, period T, 
wavelength A, and speed c of an electromagnetic 
wave. Show that one period of sodium light corre-
sponds to about 2 X 10“ ' ’ seconds.

Now thete is no way to “turn o ff’ the alleged ether 
drift, adjust the apparatus, and then turn the alleged 
ether drift on again. Instead of this, Michelson and 
Morley floated their interferometer in a pool of mer-
cury and rotated it slowly about its center like a 
phonograph record while observing the image in the 
telescope (see the figure). In this way if light is delayed 
on either path when the instrument is oriented in a 
cettain direction, light on the other path will be de-
layed by the same amount of time when the insttu- 
ment has rotated 90 degrees. Hence the total change 
in delay time between the two paths observed as the 
interferometer rotates should be twice the difference 
calculated using the expression derived in part c. By 
refinements of this method Michelson and Morley 
were able to show that the time change between the 
two paths as the instrument rotated corresponded to 
less than one one-hundredth of the shift from one 
dark image in the telescope to the next dark image. 
Show that this result implies that the motion of the 
ethet at the surface of Earth —  if it exists at all — is 
less than one sixth of the speed of Earth in its orbit. In 
order to eliminate the possibility that the ether was 
flowing pasr Sun at the same rate as Earth was moving 
its orbit, they tepeated the experiment at intervals of 
three months, always with negative results.

g Discussion question; Does the Michelson-  
Morley experiment, by itself, disprove the theory that 
light is propagated through an ether? Can the ether 
theory be modified to agree with the results of this 
experiment? How? W h a t further experiment can be 
used to test the modified theory?
Reference: A. A. Michelson and E. W . Morley, American Journal of 
Science, Volume 134, pages 3 3 3 -3 4 5  (1887).

3 -13 the K e n n e d y—Thorn dike 
experim en t

N ote: Part d of this exercise uses elementary calculus.
The Michelson -  Morley experiment was designed 

to detect any motion of Earth relative to a hypotheti-
cal fluid —  the ether— a medium in which light was 
supposed to move with characteristic speed c. No 
such relative motion of earth and ether was detected. 
Partly as a result of this experiment the concept of 
ether has since been discarded. In the modern view, 
light requires no medium for its transmission. What 
significance i does the negative result of the

Michelson -  Morley experiment have for us who do 
not believe in the ether theory of light propagation? 
Simply this: (1) The round-trip speed of light mea-
sured on earth is the same in every direction —  the 
speed of light is isotropic. (2) The speed of light is 
isotropic not only when Earth moves in one direction 
around Sun in, say, January (call Earth with this 
motion the “laboratory frame”), but also when Earth 
moves in the opposite direction around Sun six 
months later, in July (call Earth with this motion the 
“rocket frame”). (3) The generalization of this result 
to any pair of inertial frames in relative motion is 
contained in the statement. The round-trip speed of 
light is isotropic both in the laboratory frame and in 
the rocket frame. This result leaves an important 
question unanswered: Does the round-ttip speed of 
light— which is isotropic in both laboratory and 
rocket frames —  also have the same numerical value 
in laboratory and rocket frames? The assumption that 
this speed has the same numerical value in both 
frames played a central role in demonstrating the 
invariance of the interval (Section 3.7). But is this 
assumption valid?

a  An experiment to test the assumption of the 
equality of the round-trip speed of light in two inettial 
frames in relative motion was conducted in 1932 by 
Roy J. Kennedy and Edward M. Thorndike. The 
experiment uses an interferometer with atms of un-
equal length (see the figute). Assume that one arm of 
the interferometer is A/ longer than the other arm. 
Show that a flash of light entering the apparatus will 
take a time 2A//c longer to complete the round trip 
along the longer arm than along the shotter arm. The 
difference in length A/ used by Kennedy and Thorn-
dike was approximately 16 centimeters. What is the 
approximate difference in time for the round trip of a 
light flash along the alternative paths?

b Instead of a pulse of light, Kennedy and 
Thorndike used continuous monochromatic light of 
period T =  1.820 X 10“ ' ’ seconds (A =  546.1 
nanometers =  546.1 X 10“  ̂meters) from a mercury 
source. Light that ttaverses the longer arm of the 
interferometer will return approximately how many 
periods n later than light that traverses the shortet 
atm? If in the actual experiment the number of pe-
riods is an integer, the reunited light from the two 
arms will add (crest-to-crest) and the field of view 
seen through the telescope will be bright. In contrast, 
if in the actual experiment the number of periods is a 
half-integer, the reunited light from the two arms will 
cancel (crest-to-trough) and the field of view of the 
telescope will be dark.

c Earth continues on its path around Sun. Six 
months later Earth has reversed the direction of its 
velocity relative to the fixed stars. In this new frame of
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EXERCISE 3-13. Schematic diagram of apparatus used for the 
K ennedy- 'Vhomdike experiment. Parts of the interferometer have 
been labeled w ith letters corresponding to those used in describing 
the M ichelson-Morley interferometer (Exercise 3 -12 ) .  The experi �
menters went to great lengths to insure the optical and mechanical 
stability of their apparatus. The interferometer is mounted on a 
plate of quartz , which changes dimension very l itt le when tempera �
ture changes. The interferometer is enclosed in a  vacuum jacket so 
tha t changes in atmospheric pressure w ill not a lter the effective 
optical p a th length of the interferometer arms (slightly different 
speed of light a t different atmospheric pressure). The inner vacuum

jacket is surrounded by an outer water jacket in which the water is 
kept a t  a  temperature th a t varies less than ± 0 . 0 0 1  degrees Celsius. 
The entire apparatus shown in the figure is enclosed in a  small 
darkroom (not shown) ma inta ined a t  a  temperature constant within 
a  few hundredths of a  degree. The small darkroom is in turn enclosed 
in a  larger darkroom whose temperature is constant w ithin a  few 
tenths of a  degree. The overall size of the apparatus can he judged 

from the f a c t tha t the difference in length of the two arms of the 
interferometer (length eb compared w ith length ejb) is 16  
centimeters.

reference will the round-trip speed of light have the 
same numerical value c as in the original frame of 
reference? One can rewrite the answer to part b for the 
original frame of reference in the form

f  =  ( 2 / « ) ( A / / 7 )

where A/ is the difference in length between the two 
interferometer arms, T is the time for one period of 
the atomic light source, and n is the number of periods 
that elapse between the return of the light on the 
shorter path and the return of the light on the longer 
path. Suppose that as Earth orbits Sun no shift is 
observed in the telescope field of view from, say, light 
toward dark. This means that n is observed to be 
constant. What would this hypothetical result tell 
about the numerical value c of the speed of light?

Point out the standards of distance and time used in 
determining this result, as they appear in the equa-
tion. Quartz has the greatest stability of dimension of 
any known material. Atomic time standards have 
proved to be the most dependable earth-bound time-
keeping mechanisms.

d In order to carry our the experiment outlined in 
the preceding paragraphs, Kennedy and Thorndike 
would have had to keep their interferometer operat-
ing perfectly for half a year while continuously ob-
serving the field of view through the telescope. Unin-
terrupted operation for so long a time was not 
feasible. The actual durations of their observations 
varied from eight days to a month. There were several 
such periods of observation at three-month time sep-
arations. From the data obtained in these periods, 
Kennedy and Thorndike were able to estimate that
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over a single six-month observation the number of 
periods n of relative delay would vary by less than the 
fraction 3/1000 of one period. Take the differential 
of the equation in part c to find the largest fractional 
change dc/c of the round-trip speed of light between 
the two frames consistent with this estimated change 
in n (frame 1 — the “labotatory” frame —  and frame 
2 —  the “rocket” frame— being in the present anal-
ysis Earth itself at two different times of year, with a 
relative velocity twice the speed of Earth in its orbit: 
2 X 30 kilometets/second).

H istorical note: At the time of the Michelson- 
Morley experiment in 1887, no one was ready for the 
idea that physics —  including the speed of light— is 
the same in every inertial frame of reference. Accord-
ing to today’s standard Einstein interptetation it 
seems obvious that both the Michelson-Motley and 
the Kennedy-Thorndike experiments should give 
null results. However, when Kennedy and Thorndike 
made their measurements in 1932, two alternatives 
to the Einstein theory were open to consideration 
(designated here as theory A and theory B). Both A 
and B assumed the old idea of an absolute space, or 
“ether,” in which light has the speed c. Both A and B 
explained the zero fringe shift in the Michelson-  
Motley experiment by saying that all matter that 
moves at a velocity v (expressed as a fraction of light- 
speed) relative to “absolute space” undergoes a 
shrinkage of its space dimensions in the direction of 
motion to a new length equal to (1 — times the 
old length (“Lorentz-FitzGerald contraction hypoth-
esis”). The two theories differed as to the effect of 
“motion through absolute space” on the running rate 
of a clock. Theory A said. No effect. Theory B said 
that a standard seconds clock moving through abso-
lute space at velocity v has a time between ticks of 
(1 “  seconds. In theory B the ratio A //T in  the 
equation in part b  will not be affected by the velocity 
of the clock, and the Kennedy-Thorndike experi-
ment will give a null result, as observed (“compli-
cated explanation for simple effect”). In theory A the 
ratio A //T  in the equation will be multiplied by the 
factor (1 ~  at a time of year when the “velocity
of Earth relative to absolute space” is v-̂  and multi-
plied by (1 — at a time of year when this
velocity is Thus the fringes should shift from one 
time of year (v^ =  t'otbitai *̂Sun) to anorher time of 
year (v^ =  “  t'sun) unless by accident Sun
happened to have “zero velocity relative to absolute 
space” — an accident judged so unlikely as not to 
provide an acceptable explanation of the observed 
null effect. Thus the Kennedy-Thorndike experi-
ment ruled out theory A (length contraction alone) 
but allowed theory B (length contraction plus time 
contraction) —  and also allowed the much simpler

Einstein theory of equivalence of all inertial reference 
frames.

The “sensitivity” of the Kennedy-Thorndike ex-
periment depends on the theory under considerarion. 
In the context of theory A the observations set an 
upper limit of about 15 kilometers/second to the 
“speed of Sun through absolute space” (sensitivity 
reported in the Kennedy-Thorndike paper). In the 
context of Einstein’s theory the observations say that 
the round-trip speed of light has the same numerical 
magnitude— within an error of about 3 meters/ 
second — in inertial frames of reference having a rela- 
rive velocity of 60 kilometers/second.

Reference: R. J . Kennedy and E. M. Thorndike, Physical Review, 
Volume 42, pages 4 0 0 -4 1 8  (1932).

3 -1 4 things tha t move f ast e r 
than light

Can “things” or “messages” move fasrer than light? 
Does relativity really say “No” to this possibility? 
Explore these questions further using the following 
examples.

a  T he Scissors Paradox. A very long straight 
rod, inclined at an angle d  to the x-axis, moves down-
ward with uniform speed as shown in the figure. 
Eind rhe speed of the point of intersection A  of the 
lower edge of the stick with the x-axis. Can this speed 
be greater than the speed of light? If so, for what 
values of the angle 0  and does this occur? Can the 
motion of intersection point A  be used to transmit a 
message faster rhan lighr from someone at the origin 
to someone far out on the x-axis?

b  Transm ission o f a H am m er Pulse. Sup-
pose the same rod is inirially at test in the laboratory 
with the point of intersection initially at the origin. 
The region of the rod centered at the origin is struck 
sharply with the downward blow of a hammer. The 
point of intersection moves to the right. Can this 
motion of the point of intersection be used to transmit 
a message faster than the speed of light?

c Searchlight Messenger? A very powerful 
searchlight is rotated rapidly in such a way that its 
beam sweeps out a flat plane. Observers A  and B are 
at rest on the plane and each the same distance from 
the searchlight but not near each other. How far from 
the searchlight must A  and B be in order that the 
searchlight beam will sweep from A to B faster than a 
light signal could travel from A  to BP Before they 
took their positions, the two observers were given the 
following instruction:

To A: “When you see the searchlight beam, fire a bullet 
at B.”
To B: “When you see the searchlight beam, duck be-
cause A has fired a bullet at you.”
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EXERCISE 3-14. Can the point of intersection A move w ith a  speed greater than the speed of light?

Under these circumstances, has a warning message 
traveled from A to B with a speed faster than that of 
light?

d  Oscilloscope W riting  Speed. The manu-
facturer of an oscilloscope claims a writing speed (the 
speed with which the bright spot moves across the 
screen) in excess of the speed of light. Is this possible?

3-15 four lim es the sp eed of 
l ig h t?

We look westward across the United States and see 
the rocket approaching us at four times the speed of 
light.

H ow c an th is be, since nothing moves f a s t e r 
th a n  l igh t?

C. We did not say the rocket moves faster 
than light; we said only that we see it 
moving faster than light.

Here is what happens: The rocket streaks under the 
Golden Gate Bridge in San Francisco, emitting a flash 
of light that illuminates the rocket, the bridge, and 
the surroundings. At time A? later the rocket threads 
the Gateway Arch in St. Louis that commemorates 
the starting point for covered wagons. The arch and 
the Mississippi riverfront are flooded by a second flash 
of light. The top figure is a visual summary of mea-

surements from our continenr-spanning latticework 
of clocks taken at this moment.

Now the rocket continues toward us as we stand in 
New York City. The center figure summarizes data 
taken as the first flash is about to enter our eye. Flash 
1 shows us the rocket passing under the Golden Gate 
Bridge. An instant later flash 2 shows us the rocket 
passing through the Gateway Arch.

a  Answer the following questions using symbols 
from the first two figures. The images carried by the 
two flashes show the rocket how far apart in space? 
What is the time lapse between our reception of these 
two images? Therefore, what is the apparent speed of 
the approaching rocket we see? For what speed v of 
the rocket does the apparent speed of approach equal 
four times the speed of light? For what rocket speed 
do we see the approaching rocket to be moving at 99 
times the speed of light?

b  Our friend in San Francisco is deeply disap-
pointed. Looking eastward, she sees the retreating 
rocket traveling at less than half the speed of light 
(bottom figure). She wails, “Which one of us is 
wrong?” “Neither one.” we reply. “No matter how 
high rhe speed v of the rocket, you will never see ir 
moving directly away from you at a speed greater than 
half the speed of light.”

Use the bottom figure to derive an expression for 
the apparent speed of recession of the rocket. When 
we in New York see the rocket approaching at four 
times the speed of light, with what speed does our San 
Francisco friend see it moving away from her? When 
we see a faster rocket approaching at 99 times the 
speed of light, what speed of recession does she be-
hold?
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EXERCISE 3-15. Top: Rocket headed east, shown a t  the instant i t 
passes under the Gateway Arch in St. Louis and emits flash 2 . The 
rocket is chasing flash 1, emitted earl ier as i t  passed under the 
Golden Gate Bridge in San Francisco. C enter:  The two image �
carrying flashes are close together, so they enter the eye in rapid 
succession. This gives the viewer the v isua l impression tha t the 
rocket moved from San Francisco to St. Louis in a  very short time.

Bottom: Rocket headed east, shown a t  the instant i t  approaches the 
Empire State Building in New York C ity and  emits flash 3 . When 
the rocket moves away from the viewer, the distance of rocket travel 
is added to the separation between flashes. This increases the ap �
parent time between flashes, giving the viewer the impression tha t 
the rocket moved from St. Louis to New York a t  less than one h a l f  
light-speed.

3 -16 su p erlu m inal expansion  
off q u asar 3 C 2 7 3?

The most powerful sources of energy we know or 
conceive or see in all the universe are so-called quasi- 
stellar objects, or quasars, starlike sources of light 
located billions of light-years away. Despite being far

smaller than any galaxy, the typical quasar manages 
to put out more than 100 times as much energy as our 
own Milky Way, with its hundred billion stars. Qua-
sars, unsurpassed in brilliance and remoteness, we 
count today as lighthouses of the heavens.

One of the major problems associated with quasars 
is that some are composed of two or more components
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EXERCISE 3-16, first figure. L eft: Bright “knot” of plasma ejected from a  quasar a t  high speedy emits a  
f irst flash of light toward E arth. R ight :  The knot emits a  second l ight flash toward E arth a  time At later. 
This time At is measured locally near the knot using the E arth-linked latticework of rods and  clocks (har!  
harl).

that appear to be separating from each other with 
relative velocity greater than the speed of light (“su-
perluminal” velocity). One theory that helps explain 
this effect pictures the quasar as a core that ejects a jet 
of plasma at relativistic speed. Disturbances or insta-
bilities in such a jet appear as discrete “knots” of 
plasma. The motion and light emission from a knot 
may account for its apparent greater-than-light speed, 
as shown using the first figure.

a  The first figure shows two Earth-directed light 
flashes emitted from the streaking knot. The time 
between emissions is A/ as measured locally near the 
knot using the Earth-linked latticework of rods and 
clocks. Of course the clock readings on this portion of 
the Earth-linked latticework are not available to us on 
Earth; therefore we cannor measure A/ directly. 
Rather, we see the time separation between the atriv- 
als of the two flashes at Earth. From the figure, show 
that this Earth-seen time separation At^^ is given by 
the expression

=  A /(l V COS Q)

b  We have another disability in viewing the knot 
from Earth. We do not see the motion of the knot 
toward us, only the apparent motion of the knot 
across our field of view. Find an expression for this 
transverse motion (call it between emissions of
the two light flashes in terms of Ar.

c Now calculate the speed of the rightward 
motion of the knot as seen on Earth. Show that the 
result is

.X -------
V sin e

1 V cos e
d  What is the value of when the knot is 

emitted in the direction exactly toward Earth? when it 
is emitted perpendicular to this ditection? Find an 
expression that gives the range of angles Q for which 

is greater than the speed of light. For 0 =  45 
degrees, what is the range of knot speeds v such that 

is greater than the speed of light? 
e  If you know calculus, find an expression for the 

angle at which has its maximum value for a 
given knot speed v. Show that this angle satisfies the 
equation cos B ,^  =  v. Whether or not you derive this 
result, use it to show that the maximum apparent 
transverse speed is seen as

t/'*^seen, max (1 -^4)1/2

f  What is this maximum transverse speed seen 
on Earth when v =  0.99?

g The second figure shows the pattern of radio 
emission from the quasar 3C273. The decreased pe-
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E X ER C ISE 3 - 1 6 ,  s e c o n d  f i g u r e .  Contour lines o f  radio emission 
from  the quasar 5 C 2 7  3 show ing a  bright “k n o t"  o f  p lasm a appar-
ently moving aw a y  from  i t  a t  a  speed greater than  the speed o f  light. 
The tim e o f  each image is g iven  as calendar year a n d  decim al 

fra c tio n . H orizon ta l scale d iv isions are in  u n its  o f  2  m illi arc-se-
conds. (1 m illi arc-second  =  lO r ^ jj^ O O  degree =  4 .8 5  X  1G~^ 
rad ian)

riod of radiation from this source (Exercise 3-10) 
shows that it is approximately 2.6 X 10^ light-years 
from Earth. A secondary source is apparently moving 
away from the central quasar. Take your own mea-
surements on the figure. Combine this with data from 
the figure caption to show that the apparent speed of 
separation is greater than 9 times the speed of light.

Note: As of 1990, apparent greater-than-light- 
speed (“superluminal”) motion has been observed in 
approximately 25 different sources.

References: Analysis and first figure adapted from Denise C. Ga- 
buzda, American Journal o f  Physics, Volume 55, pages 2 1 4 -2 1 5  
(1987). Second figure and data taken from T. J. Pearson, S. C. 
Unwin, M. H. Cohen, R. P. Linfield, A. C. S. Readhead, G . A, 
Seielstad, R. S. Simon, and R. C. Walker, Nature, Volume 290, 
pages 3 6 5 -3 6 8  (2 April 1981),

3-17 contraction or rotation?
A cube at rest in the rocket frame has an edge of 
length 1 meter in that frame. In the laboratory frame 
the cube is Lorentz contracted in the direction of 
motion, as shown in the figure. Determine this Lor-
entz contraction, for example, from locations of four 
clocks at rest and synchronized in the laboratory lat-
tice with which the four corners of the cube, E, F, G, 
H, coincide when all four clocks read the same time. 
This latticework measurement eliminates time lags in 
the travel of light from different corners of the cube.

Now for a different observing procedure! Stand in 
the laboratory frame and look at the cube with one eye 
as the cube passes overhead. What one sees at any 
time is light that enters the eye at that time, even if it 
left the different corners of the cube at different times. 
Hence, what one sees visually may not be the same as 
what one observes using a latticework of clocks. If the 
cube is viewed from the bottom then the distance GO 
is equal to the distance HO, so light that leaves G and 
H  simultaneously will arrive ar 0  simultaneously. 
Hence, when one sees the cube to be overhead one will 
see the Lorentz contraction of the bottom edge.

a  Light from E that arrives at 0  simultaneously 
with light from G will have to leave E earlier rhan 
light from G left G. How much earlier? How far has 
the cube moved in this time? What is the value of the 
distance x in the right top figure?

b  Suppose the eye interprets the projection in the 
figures as a rotation of a cube that is not Lorentz 
contracted. Find an expression for the angle of appar-
ent rotation (f> of this uncontracted cube. Interpret 
this expression for the two limiting cases of cube speed 
in the laboratory frame: p —* 0 and p —* l .

C Discussion question: Is the word “really” 
an appropriate word in the following quotations?
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E G

(1 -  v̂ )'

E X ER C ISE 3 - 1 7 .  h e f t :  Position o f  eye o f  v isu a l observer w atch ing  cube pass overhead. R ig h t  top: W h a t the 
v isu a l observer sees as she looks up  from  below. R ig h t  b o tto m : H ow  the v isu a l observer can interpret the 
projection o f  the second figure.

(1) An observer using the rocket latticework of 
clocks says, “The stationary cube is really nei-
ther rotated nor contracted.”

(2) Someone riding in the rocket who looks at the 
stationary cube agrees, “The cube is really nei-
ther rotated nor contracted.”

(3) An observer using the laboratory latticework 
of clocks says, “The passing cube is really Lor- 
entz contracted but not rotated.”

(4) Someone standing in the laboratory frame 
looking at the passing cube says,' ‘The cube is 
really rotated but not Lorentz contracted.”

What can one rightfully say —  in a sentence or 
two — to make each observer think it reasonable that 
the other observers should come to different conclu-
sions?

d  The analysis of parts b  and c  assumes that the 
visual observer looks with one eye and has no depth 
perception. How will the cube passing overhead be 
perceived by the viewer with accurate depth percep-
tion?
Reference: For a more complete treatment of this topic, see Edwin F. 
Taylor, Introductory Mechanics (John Wiley and Sons, New York, 
1963), pages 3 4 6 -3 6 0 .
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LORENTZ TRANSFORMATION

L I  LORENTZ TRANSFORMATION: 
USEFUL OR NOT?

re la t e d  even ts or lo nely e v e n ts?

Events, and the intervals between events, define the layout of the physical world. No 
latticework of clocks there! Only events and the relation between event and event as 
expressed in the interval. That’s spacetime physics, lean and spare, as it offers itself to 
us to meet the needs of industry, science, and understanding.

There’s another way to express the same information and use it for the same 
purposes: Set up a free-float latticework of recording clocks, or the essential rudiments 
of such a latticework. The space and time coordinates of that Lorentz frame map each 
event as a lonesome individual, with no mention of any connection, any spacetime 
interval, to any other event.

This lattice-based method for doing spacetime physics has the advantage that it can 
be mechanized and applied to event after event, wholesale. These regimented space 
and time coordinates then acquire full usefulness only when we can translate them 
from the clock-lattice frame used by one analyst to the clock-lattice frame used by 
another.

This scheme of translation has acquired the name “Lorentz transformation.” Its 
usefulness depends on the user. Some never need it because they deal always with 
intervals. Others use it frequently because it regiments records and standardizes 
analysis. For their needs we insert this Special Topic on the Lorentz transformation. 
The reader may wish to read it now, or skip it altogether, or defer it until after Chapter 
4, 5, or 6. The later the better, in our opinion.

Ev e n ts a n d  in t e r v a ls o n ly : 
Sp a c e t i m e  l e a n  a n d  s p a r e

O r  iso la t e d  e v e n ts d esc r i b e d  
usin g l a t t ic e w o r k

Lo re n t z  t r a nsf o r m a t io n : 
T r a n sl a t e  e v e n t  d esc r ip t io n  
fro m la t t ic e to la t t ice

9 5
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L.2 FASTER THAN LIGHT?
a reason to exa m ine the Lorentx transform at ion

No object travels faster than light.

So YOU say, but watch ME: I travel in a rocket that you observe to move at 4/5 light speed. Out 
the front of my rocket I fire a bullet that I observe to fly forward at 4/5 light speed. Then you 
measure this bullet to streak forward at 4 /5 '\ '4 /5  — 8/5 — 1.6 light speed, which is greater 
than the speed of light. There!

'  No!

V e lo c i t i es d o  n o t o d d

Ev e n ts d e f in e  v e lo c i t i es

Why not? Is it not true that 4/5 +  4/5 — 1-6?

As a mathematical abstraction: always true. As a description of the world: only 
sometimes true! Example 1: Add 4 /5  liter of alcohol to 4 /5  liter of water. The result? 
Less than 8 /5  = 1 .6  liter of liquid! Why? Molecules of water interpenetrate molecules 
of alcohol to yield a combined volume less that the sum of the separate volumes. 
Example 2: Add the speed you measure for the bullet (4/5) to the speed I measure for 
your rocket (4/5). The result? The speed I measure for the bullet is 40/41 =  0.9756. 
This remains less than the speed of light.

Why? And where did you get that number 40/4l for the bullet speed you measure?

I got the number from the Lorentz transformation, the subject of this Special Topic. 
The Lorentz transformation embodies a central feature of relativity: Space and time 
separations typically do not have the same values as observed in different frames.

Space a n d  time separa t ions between w h a t?

Between events.

W h a t events are  we ta l k ing  about here?

Event 1: You fire the bullet out the front of your rocket. Event 2: The bullet strikes a 
target ahead of you.

W h a t do these events have to do w i th  speed? We are  a rgu ing  abou t speed!

Let the bullet hit the target four meters in front of you, as measured in your rocket. 
Then the space separation between event 1 and event 2 is 4 meters. Suppose the time 
of flight is 5 meters as measured by your clocks, the time separation between the two 
events. Then your bullet speed measurement is (4 meters of distance)/! 5 meters of 
time) =  4 /5 , as you said.

A nd  w h a t do Y O U  measure f o r the space a n d  time separa t ions in  your labora tory  fra m e ?

For that we need the Lorentz coord inate  transform ation  equations.
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Phooey! I  know how  to reckon spacet ime separa t ions in  dif ferent fram es. We ha v e been doing i t  fo r  
se v era l chapters!  From measurements in  one fra m e  we f igure  the spacetime in terv a l , which h as the 
same v a lue  in  a l l  fram es. E nd o f  story.

No, not the end of the story, but at least its beginning. True, the invariant interval has 
the same value as derived from measurements in every frame. That allows you to 
predict the time between firing and impact as measured by the passenger riding on the 
bullet — and measured directly by the bullet passenger alone.

Interval: Only a start in 
reckoning spacetime separations 
in different frames

Pred i c t how?

You know your space separation x ' =  4 meters (primes for rocket measurements), and 
your time separation, t ' =  'b meters. You know the space separation for the bullet 
rider, x"  =  0 (double primes for bullet measurements), since she is present at both the 
firing and the impact. From this you can use invariance of rhe interval to determine the 
wristwatch time between these events for the bullet rider:

i t ' y  -  { x " f  =  {t'Y  -  {x'Y

or

(/")^ — (0)^ =  (5 meters)^ — (4 merers)^ — (3 meters)^

so that t” =  3 meters. This is the proper time, agreed on by all observers but measured 
directly only on the wristwatch of the bullet rider.

F ine . C a n ’t  we use the same procedure to determine the space a n d  time separa t ions between these 
events in  y our labora tory  fram e , a n d  thus the bulle t speed f o r  you?

Unfortunately not. We do reckon the same value for the interval. Use unprimed 
symbols for laboratory measurements. Then f- — xd =  {?) meters)^. That, however, is 
not sufficient to determine x  or t separately. Therefore we cannot yet find their ratio 
x /t,  which determines the bullet’s speed in our frame.

Need more to compare velocities 
in different frames

So how c an we reckon these x  a n d  t  separa t ions in  your labora tory  fram e , thereby a l low ing us to 
pre d i c t the bulle t speed you measure?

Use rhe Lorentz transformation. This transformation reports that our laboratory space 
separation between firing and impact is x =  40 /3  meters and the time separation is 
slightly greater: t =  41 /3  meters. Then bullet speed in my laboratory frame is 
predicted to be f  =  x j t  — 40/41 =  0.9756. The results of our analysis in three 
reference frames are laid out in Table L-1.

Compare velocities using 
Lorentz transformation

Is the L orentz transform a t ion genera l ly useful, beyond the specific task  o f  reckoning speeds as 
measured in  dif ferent fram es?

Oh yes! Generally, we insert into the Lorentz transformation the coordinates x ', t ' of an 
event determined in the rocket frame. The Lorentz transformation then grinds and 
whirs, finally spitting out the coordinates x, t of the same event measured in the 
laboratory frame. Following are the Lorentz transformation equations. Here is the 
relative velocity between rocket and laboratory frames. For our convenience we lay rhe 
posirive x-axis along the direction of motion of the rocket as observed in the laboratory 
frame and choose a common reference event for the zero of time and space for both 
frames.
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------Cj A B L E  L - T ^ ------

H O W F AST THE BULLET?

Bullet fired
(coordinates 

of this event)

Bullet hits
(coordinates 

of this event)

Speed of bullet
(computed from 

frame coordinates)

Rocket frame x ' =  0 x' =  4 meters as measured
(moves at =  4/5 
as measured in laboratory)

l ' =  0 t ' =  5 meters in rocket frame: 
v' =  4/5 =  0.8

Bullet frame x "  =  0 x" =  0 as measured
(moves at v' =  4/5 t "  =  0 t "  =  3 meters in bullet frame:
as measured in rocket) (from invariance 

of the interval)
r" =  0

Laboratory frame x =  0 X =  40/3 meters as measured
r =  0 t =  41/3 meters 

(from Lorentz 
transformation)

in laboratory frame:
1- =  40/41 =  0.9756

Lo re n t z  t r a nsf o r m a t io n  p r e v i e w e d

k' rel ‘
(1

x ' +  t'

(1
and

Check for yourself that for the impact event of bullet with target (rocket coordi-
nates: x ' =  A meters, / ' =  5 meters; rocket speed in laboratory frame: =  4 /5 ) one
obtains laboratory coordinates x  =  40 /3  meters and t =  41 /3  meters. Hence v =  x f t  
== 40/41 =  0.9756.

You say the L orentz transform a t ion is genera l . I f  i t  is so im portan t , then why is th is a  spe c ia l topic 
ra th e r th a n  a  regu l ar chapter?

Lo re n t z  t r a nsf o r m a t io n : Use fu l 
b u t n o t f u n d a m e n t a l

The Lorentz transformation is powerful; it brings the technical ability to transform 
coordinates from frame to frame. It helps us predict how to add velocities, as outlined 
here. It describes the Doppler shift for light (see the exercises for this chapter). On the 
other hand, the Lorentz transformation is not fundamental; it does not expose deep 
new features of spacetime. But no matter! Physics has to get on with the world’s work. 
One uses the method of describing separation best suited to the job at hand. On some 
occasions the useful fact to give about a luxury yacht is the 50-meter distance between 
bow and stern, a distance independent of the direction in which the yacht is headed. 
On another occasion it may be much more important to know that the bow is 30 
meters east of the stern and 40 meters north of it as observed by its captain, who uses 
North-Star north.

T w o f o u n d a t io ns o f  
Lo re n t z  t ra nsf o r m a t io n

W h a t does the L orentz transform a t ion rest on? On w h a t found a t ions is i t  based?

On two foundations: (1) The equations must be linear. That is, space and time 
coordinates enter the equations to the first power, not squared or cubed. This results 
from the requirement that you may choose any event as the zero of space and time.
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(2) The spacetime interval between two events must have the same value when 
computed from laboratory coordinate separations as when reckoned from rocket 
coordinate separations.

All right, I 'll reserve judgment on the validity of what you claim, hut show me the derivation itself. 

Read on!

L.3 FIRST STEPS
in v aria n ce off the in t e rv a l ge ts us st ar t e d

Recall that the coordinates y  and z transverse to the direction of relative motion 
between rocket and laboratory have the same values in both frames (Section 3.6):

y - y
z =  z' (L-1)

where primes denote rocket coordinates. A second step makes use of the difference in 
observed clock rates when the clock is at rest or in motion (Section 1.3 and Box 3-3). 
Think of a sparkplug at rest at the origin of a rocket frame that moves with speed 
relative to the laboratory. The sparkplug emits a spark at time t' as measured in the 
rocket frame. The sparkplug is at the rocket origin, so the spark occurs at x ' =  0.

Where and when (x and t) does this spark occur in the laboratory? That depends on 
how fast, v^i, the rocket moves with respect to the laboratory. The spark must occur at 
the location of the sparkplug, whose position in the laboratory frame is given by

X =  V^it

Now the invariance of the interval gives us a relation between t and t',

{ t ' r  -  ( x y  =  { t y  -  { o y  = = f - x ^  =  f -  { v j f  =  t w -  vij >

Derive difference in clock rates

from which

t' =  t { \ -  ri,)V2

or

[when x' =  0] (L-2)

The awkward expression 1/(1 — occurs often in what follows. For simplic-
ity, this expression is given the symbol Greek lower-case gamma: /.

7 =
1

(1 -

Because it gives the ratio of observed clock rates, y is sometimes called the tim e 
stre tch  factor (Section 5.8). Strictly speaking, we should use the symbol /„i, since 
the value of y is determined by For simplicity, however, we omit the subscript in 
the hope that this will cause no confusion. With this substitution, equation (L-2) 
becomes

y f [when x' =  0] (L-3)

Time stretch factor defined
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Substitute this into the equation x = v ^ ^ t  above to find laboratory position in terms of 
rocket measurements:

[when x' =  0] (L-4)

Equations (L-1), (L-3), and (L-4) give the first answer to the question, “If we know 
the space and time coordinates of an event in one free-float frame, what are its space 
and time coordinates in some other overlapping free-float frame?” These equations are 
limited, however, since they apply only to a particular situation: one in which both 
events occur at the same place {x' =  0) in the rocket,

L 4  FORM OF THE LORENTZ 
TRANSFORMATION

a n y e ven t can be re f erence e v e n t? then 
transform at ion is l in e ar

Lo re n t z  t r a nsf o r m a t io n : 
Lin e a r e q u a t io n s

A r b i t r a r y  e v e n t  a s r e f e r e n c e  e v e n t ? 
T h e n Lo re n t z  t r a nsf o r m a t io n  

must b e  l in e a r .

What general form does the Lorentz transformation have? It has the form that 
mathematicians call a linear transform ation . This means that laboratory coordi-
nates X and t are related to linear (first) power of rocket coordinates x '  and t '  by 
equations of the form

/ =  fix' -f D t'
X =  Gx' +  Ht' (L-5)

where our task is to find expressions for the coefficients B, D, G, and H  that do not 
depend on either the laboratory or the rocket coordinates of a particular event, though 
they do depend on the relative speed

Why must these transfotmations be linear? Because we are free to choose any event 
as our reference event, the common origin x =  y =  z =  / =  0 in all reference frames. Let 
our rocket sparkplug emit the flashes at =  1 and 2 and 3 meters. These are equally 
spaced in rocket time. According to equation (L-3) these three events occur at 
laboratory times t =  ly  and 2y and 37 meters of time. These are equally spaced in 
laboratory time. Moving the reference event to the first of these events still leaves them 
equally spaced in time for both observers: t ' =  0 and 1 and 2 meters in the rocket and t 
=  0 and ly  and 2y in the laboratory.

In contrast, suppose that equation (L-3) were not linear, reading instead t =  Kt'^, 
where K is some constant. Rocket times t ' = \  and 2 and 3 meters result in laboratory 
times t =  IK  and 4K  and 9K  meters. These are not equally spaced in time for the 
laboratory observer. Moving the reference event to the fitst event would result in 
rocket times t' =  0 and 1 and 2 meters as before, but in this case laboratoty times t =  0 
and 1K and 4K  metets, with a completely different spacing. But the choice of reference 
event is arbitrary: Any event is as qualified to be reference event as any other. A clock 
that runs steadily as observed in one frame must run steadily in the other, independent 
of the choice of reference event. We conclude that the relation between t and t ' must be 
a linear one. A similar argument requires that events equally separated in space in the 
rocket must also be equally separated in space as measured in the laboratory. Hence 
the Lorentz transformation must be linear in both space and time coordinates.
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L5  COMPLETING THE DERIVATION
in varia n ce off the in t e rv a l com pletes the story

Equations (L-3) and (L-4) provide coefficients D  and H  called for in equation (L-5):

t — Bx' +  yt'
X =  Gx' +  v^yyt' (L - 6)

About the two constants B and G we know nothing, for an elementary reason. All 
events so far considered occured at point x' =  0 'm the rocket. Therefore the two 
coefficients B and G could have any finite values whatever without affecting the 
numerical results of the calculation. To determine B and G we turn our attention from 
an x ' =  0 event to a more general event, one that occurs at a point with arbitrary rocket 
coordinates x ' and t ' . Then we demand that the spacetime interval have the same 
numerical value in laboratory and rocket frames for any event whatever;

D e m a n d in g  i n v a r i a n c e  o f 
i n t e rv a l . . .

Substitute expressions for t and x from equation (L-6):

(fix' +  y t'Y  -{ G x ' +  p^^yt'y =  r'2 -  x'^

On the left side, multiply out the squares. This leads to the rather cumbersome result

B2 -b 2Byx't' +  yV ^  -  G^x'^ -  2Gv^{yx't' -  vlyyh'^ =

Group together coefficients of coefficients of x'^, and coefficients of the cross-term 
x 't ' to obtain

y \ \  -  +  2y{B -  v jG )  x 't ' -  {G^ -  B?)x'^ =  t'^ -  x'^ a-7)

Now, t ' and x ' can each take on any value whatsoever, since they tepresent the 
coordinates of an arbitrary event. Under these circumstances, it is impossible to satisfy 
equation (L-7) with a single choice of values of B and Gunless they are chosen in a very 
special way. The quantities B and G must first be such as to make the coefficient of x 't ' 
on the left side of equation (L-7) vanish as it does on the tight:

2y{B -  VJG) =  0

But 7 can never equal zero. The value of 7 =  1 /(1  ~  ^) *̂  ̂equals unity when =  0 
and is greatet than this fot any othet values of Hence the left side of this equation 
can be zero only if

(B -  =  0 or B — v„,G (L - 8 )

Second, B and G must be such as to make the coefficient of x equal on the left and 
right of equation (L-7); hence

-  B2 =  1

Substitute B from equation (L-8) into equation (L-9):

G^ -  {v^ fiY  = 1  ot G K \ - v l ^ ) = \

(L - 9 )

. . . b e t w e e n  a n y  p a i r  o f  e v e n ts 
w h a tso e v e r  . . .

. . . l e a d s to c o m p le t e d  form o f  
Lo re n t z  t r a nsf o r m a t io n .



The Lorentz transformation

Divide through by (1 — and take the square root of both sides:

1

But the right side is just the definition of the time stretch factor y, so that

G = y

Substitute this into equation (L-8) to find B:

B =  v^y
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These results plus equations (L-1) and (L-6) yield the Lorentz transformation equa-
tions:

t =  +  yt'
x =  yx' +  v„iyt' (L- lO a)
y = : /
ẑ — z

or, substituting for the value of gamma, y =  1/(1 —

x' +  Vg,/
(L-1 Ob)

y - y and z — z

In summary, the Lorentz transformation equations rest fundamentally on the re-
quired linearity of the transformation and on the invariance of the spacetime interval. 
Invariance of the interval was used twice in the derivation. First, we examined a pair 
of events both of which occur at the same fixed location in the rocket, so that rocket 
time between these events— proper time, wristwatch time— equals the space-time 
interval between them (Section L.3). Second, we demanded that the interval also be 
invariant between every possible event and the reference event (the present section).

L.6 INVERSE LORENTZ 
TRANSFORMATION

from la b o ra t o ry even t co ord ina tes, reckon 
rocket coordina tes

Equations (L-10) provide laboratory coordinates of an event when one knows the 
rocket coordinates of the same event. But suppose that one already knows the 
laboratory coordinates of the event and wishes to predict the coordinates of the event 
measured by the rocket observer. What equations should be used for this purpose?

An algebraic manipulation of equations (L-10) provides the answer. The first two 
of these equations can be thought of as two equations in the two unknowns x ' and t ' . 
Solve for these unknowns in terms of the now-knowns x  and t. To do this, multiply 
both sides of the second equation by and subtract corresponding sides of the
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resulting second equation from the first. Terms in x  cancel to yield

y ■ t'
t =  yt' -  vuyt' =  n i  - K O f  =  32  v f '  =  y d  =  —  t '  =  -

y2 y

Here we have useci the definition — 1/(1 — The equation for t' can then be 
written

t' =  - ^ r ^ y x  +  yt

A similar procedure leads to the equation for x ' . Multiply the first of equations (L-10) 
by i'rel and subtract corresponding sides of the first equation from the second —  try it! 
The y and z components are respectively equal in both frames, as before. Then the 
inverse Lorentz transfo rm ation  equations become

t '=  -v ,,^ y x -V y t  
/  - y x -  v^^yt 
y = yr _
Z —  Z

Or, substituting again for gamma, y =  1/(1 —

(L - l l a )

(1
X • ^el t

(L - l l b )

and

Long derivation of inverse 
Lorentz transformation

Inverse Lorentz transformation

Equations (L-11) transform coordinates of an event known in the laboratory frame to 
coordinates in the rocket frame.

A simple but powerful argum ent from symmetry leads to the same result. The symmetry 
argument is based on the relative velocity between laboratory and rocket frames. With 
respect to the laboratory, the rocket by convention moves with known speed in the 
positiv e x-direction. With respect to the rocket, the laboratory moves with the same speed 
but in the opposite direction, the nega tiv e x-direction. This convention about positive and 
negative directions —  not a law of physics! —  is the only difference between laboratory 
and rocket frames that can be observed from either frame. Lorentz transformation 
equations must reflect this single difference. In consequence, the “inverse” (laboratory- 
to-rocket) transformation can be obtained from the “direct” (rocket-to-laboratory) 
transformation by changing the sign of relative velocity, v ^ , in the equations and 
interchanging laboratory and rocket labels (primed and unprimed coordinates). Carrying 
out this operation on the Lorentz transformation equations (L-10) yields the inverse 
transformation equations (L-11).

Short derivation of inverse 
Lorentz transformation

L.7 ADDITION OF VELOCITIES
a d d  ligh t v e lo c i t y to ligh t v e lo c i t y : ge t light 
veloci t y!

The Lorentz transformation permits us to answer decisively the apparent contradiction 
to special relativity outlined in Section L.2, namely the apparent addition of velocities 
to yield a resultant velocity greater than that of light.
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Return to velocity addition 
paradox

I travel in a rocket that you observe to move at 4 (5 light speed. Out the front of my rocket I fire a 
bullet that I observe to fly forward at 4fb light speed. Then you measure this bullet to streak 
forward at4l3'k-4l5 = 8j5 = 1.6 light speed, which is greater than the speed of light. There!

SAMP  L E PRO  B L E M L - 1

T R A N S F O R M I N G  O V E R  A N D  B A C K
A rocket moves with speed =  0.866 (so y =  2) 10 meters, y = 1  meters, z =  i  meters, and t' =
along the x-direction in the laboratory. In the 20 meters of light-travel time with respect to the
rocket frame an event occurs at coordinates x' =  reference event.

a . What are the coordinates of the event as observed in the laboratory?

b. Transform the laboratory coordinates back to the rocket frame to verify that the 
resulting coordinates are those given above.

SOLUTIO N
a . We already know from Section 3.6 — as well as from the Lorentz transformation, 

equation (L-10) — that coordinates transverse to direction of relative motion are 
equal in laboratory and in rocket. Therefore we know immediately that

y — y ' — 1 meters 
z — z' — i  meters

The X  and t  coordinates of the event as observed in the laboratory make use of the 
first two equations (L-10):

t  =  v^^ifx' +  yt' =  (0 .866)(2)(10 meters) +  (2)(20 meters)
=  17.32 +  40 =  57.32 merers

and

X — yx' -h v^^fyt' =  2(10 meters) +  (0.866)(2)(20 meters)
=  20 +  34.64 =  54.64 merers

So rhe coordinates of the event in the laboratory are t =  57.32 meters, x  =  54.64 
meters, y =  l  meters, and z =  3 meters.

b. Use equarion (L-11) ro rransform back from laboratory to rocket coordinates.

t ' =  ~ v^{yx +  yt =  — (0.866)(2)(54.64 meters) +  (2)(57.32 meters)
=  —94.64 -b 114.64 =  20.00 meters

and

X = y x — v ^ y t  =  2(54.64 merers) — (0.866)(2)(57.32 meters) 
=  109.28 -  99.28 =  10.00 meters

as given in rhe original statement of the problem.



To analyze this experiment, convert statements about the bullet to statements about 
events, since event coordinates are what the Lorentz transformation transforms. Event 
1 is the firing of the gun, event 2 the arrival of the bullet at the target. The Lorentz 
transformation equations can give locations x,, and X2, ?2 of these events in the 
laboratory frame from their known locations x \ ,  t \  and x  2 , t '2 in the rocket frame. In 
particular:

X2 =  yx2 +  v^C/t' 2 

Xi =  y x / +

Subtract corresponding sides of these two equations:

(X2 — xi) =  y (x 2 — x 'l) +  v,^{y{t'2 — z'l)

We are inrerested in the differences between the coordinates of the two emissions.
Indicate these differences with the Greek uppercase delta. A, for example Ax. Then 
this x-equation and the corresponding /-equation become

L.7 ADDITION OF VELOCITIES 1 0 5

A x  =  y A x ' +  /^ „ iy A /  
A /  =  t^reiyAx' +  y A / (L-12)

In cre m e n t a l e v e n t  se p a r a t i o n s 
d e f in e  v e lo c i t i es

The subscript “tel” distinguishes relative speed between laboratory and rocket frames 
from other speeds, such as particle speeds in one frame or the other.

Bullet speed in any frame is simply space sepatation between two events on its 
trajectory measured in that frame divided by time between them, observed in the same 
frame. In the special case chosen, only the x-coordinate needs to be considered, since 
the bullet moves along the direction of relative motion. Divide the two sides of the first 
equation (L-12) by the corresponding sides of the second equation to obtain labora-
tory speed:

A x  yA x^ +  v̂ {yiS.t'
A /  t „ ,y A x '  +  y A /

Then the time stretch factor y cancels from the numerator and denominator on the 
right. Divide every term in numerator and denominator on the right by A/'.

Ax _  (A x '/A /)  +

A t v^^fA x '/A t') +  1

Now, A x '/ A t ' is just distance covered per unit time by the patticle as observed in 
the rocket, its speed —  call it v , with a prime. And A x /A t  is particle speed in the 
laboratory —  call it simply v. Then (reversing order of terms in the denominatot to 
give the result its usual form) the equation becomes

v' +  v„
1 + V v„

(1-13) La w  o f A d d i t i o n  o f V e lo c i t i es

This is called the L a w  o f  A d d i t i o n  o f  V e lo c i t i e s  in one dimension. A better name is 
the L a w  o f  C o m b in a t i o n  o f  V e lo c i t i e s , since velocities do not “add” in the usual 
sense. Using the Law of Combination of Velocities, we can predia bullet speed in the 
laboratory. The bullet travels at v' — 4 /5  with respect to the rocket and the rocket 
moves at v^  ̂=  4 /5  with tespect to the laboratory. Therefore, speed v of the bullet

(continued on page 1 10)
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S AMPL E  PROB L EM  L-2

“ ET T U ,  S P A C E T I M E I ”
Julius Caesar was murdered on March 15 in the 
year 44 B.c. at the age of 55 approximately 2000 
years ago. Is there some way we can use the laws of 
relativity to save his life?

Let Caesar’s death be the reference event, la-
beled 0: =  0, C ~  0. Event A is you reading this
exercise. In the Earth frame the coordinates of 
event A  are x^ =  0 light-years, =  2000 years. 
Simultaneous with event A  in your frame, Starship 
Enterprise cruising the Andromeda galaxy sets off

a firecracker: event B. The Enterprise moves along 
a straight line in space that connects it with Earth. 
Andtomeda is 2 million light-years distant in our 
frame. Compared with this distance, you can ne-
glect the orbit of Earth around Sun. Therefore, in 
our frame, event B has the coordinates Xg =  2 X 
10^ light-years, tg — 2000 years. Take Caesar’s 
murder to be the reference event for the Enterprise 
too (x / =  0 , r /  =  0).

a . How fast must the Enterprise be going in the Earth frame in order that Caesar’s 
murder is happening N OW  (that is, =  0) in the Enterprise rest frame? Under 
these circumstances is the Enterprise moving toward or away from Earth?

b. If you are acquainted with the spacetime diagram (Chapter 5), draw a spacetime 
diagram for the Earth frame that displays event 0  (Caesar’s death), event A  (you 
reading this exercise), event B (firectacker exploding in Andromeda), your line of 
NOW  simultaneity, the position of the Enterprise, the worldline of the Enter-
prise, and the Enterprise NOW  line of simultaneity. The spacetime diagtam need 
not be drawn to scale.

c. In the Enterprise frame, what are the x and / coordinates of the firecracker 
explosion?

d. Can the Enterprise firecracker explosion warn Caesar, thus changing the course of 
Earth history? Justify your answer.

SOLUTIO N
a . From the statement of the problem.

Xo — x /  — 0 
L =  l /  =  0

=  0
2000 years

Xg — 2 X 10  ̂ light-years 
/g =  2000 years

We want the speed of the Entetprise such that tg' — 0. The first two Lorentz 
transformation equations (L-10) with tg' =  0 become

'̂rel y^B 
X g yX g

We do not yet know the value of X g '.  Solve for by dividing the two sides of the
first equation by the respective sides of the second equation. The unknown Xg' 
drops out (along with y), and we are left with in terms of the known quantities 
tg and x„:

'B _ 2 X 10  ̂ years
— ---- ^ -----=  10-3 =  0.001
2 X  1 0^ vpar<:Xg 2 X  10  ̂years

This is the desired speed p^̂  between Earth and Enterprise frames. This velocity is 
a positive quantity, so the Enterprise moves in the positive x-direction, namely 
away from Earth.
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Surprised to see a speed given as the ratio of a time separation to a space 
separation: Then realize that x^ and /g are not displacements of any
particle. Nothing can travel the distance Xg in the time /g, as discussed in d. The 
goal here is to find a frame in which Caesar’s death and the firecracker explosion 
are simultaneous. For this limited purpose the rocket speed =  /g/xg is correct.

Why is the relative velocity so small compared with the speed of light? 
Because of the large denominator Xg in the equation that leads to this value. 
Consider the string of Earth clocks stretching toward Andromeda when all Earth 
clocks read zero time (Caesar’s death). Enterptise clocks read (from equations 
L-11 with / =  0) as follows: / ' =  — fx . This is an example of the relativity of 
simultaneity (Section 3-4). The farther the x-distance from Earth, the earlier will 
Enterprise clock read. With x =  2 million light-years, the relative speed does 
not have to be large to carry Enterprise time back 2000 years for Earth.

b.

E arth spacetime diagram, showing events 0, A , and B. Not to scale.

c. We need the value of gamma, y, for the inverse Lorentz transformation equation 
(L-11). This value is very close to unity, and from it come tg and Xg'.

y  =  .
1 1 1

1 +
10-

[ 1  -  i i  -  (10-3 )231 / 2  Q  _  1 0 -6 ] l / 2

tg =  - V , , J X g  -b ytg =  }»(- 10“ 3 X 2 X 10  ̂ -f 2 X 103)
=  y( - 2  X 103 4- 2 X 103) =  0 years 

Xb =  yxB -  v â JIb =  7(2 X 10  ̂ -  10-3 X 2 X 103) =  2y(l -  10-«) 10«
10-6 10-

=  2 ^1 “  10-6)106 =  2^

«= 1.999999 X 106 light-years.

1 106

We chose the relative velocity so that the time of the firecracker explosion as 
observed in the rocket is the same as the time of Caesar’s death, namely tg' =  0. 
The x-coordinate of this explosion is not much different in the two frames because 
their relative velocity is so small.

d. There exists a frame — the rest frame of the Enterprise —  in which Caesar’s death 
and the firecracker explosion occur at the same time. In this frame a signal 
connecting the two events would have to travel at infinite speed. But this is 
impossible. Therefore the Enterprise cannot warn Caesar; his death is final. Sorry. 
(Note: In the language of Chapter 6 , the relation between the two events is 
spacelike, and spacelike events cannot have a cause-effect relationship.)
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W HY N O THIN G TRAVELS FASTER THA N LIGHT

A material o b jec t traveling f ast er than light? N o! If one 
did , w e could v io la t e the normal o rd e r o f c a use an d  
ef fect in a million t est a b le  w a ys, to tally co n trary to all 
e x p erie n ce . H ere w e investig a te o ne e x a m ple , making 
use o f Lorentz transformation eq ua tions.

The P e a ce Trea ty o f Shalim ar w as sig ned four y e a rs 
b e f o re the G r e a t  Be t raya l . So pivo tal an ev en t w as the 
G r e a t  Be t raya l that it w as taken as z e ro  o f sp a c e  an d  
time.

By the Trea t y o f Shalim ar , the murderous Klingons 
a g re e d  to stop a t tack in g Fe d era t io n outposts in return 
for a c c ess to the Fe d era t io n Tech nical D a t a b ase . Fe d �
era t ion neg o tia to rs lef t im m ediately a f te r signing the 
Shalim ar Trea t y in a  ship moving a t 0 .6  light sp e e d .

Within four y e a rs the Klingons used the Fed era t io n  
Technical D a t a b ase  to d e v e lo p  a fast er- than-lig ht p ro �
ject ile , the slaugh tering Su per. O n that d a rk  d a y  of 
G r e a t  Be t raya l (re f ere nce even t 0), the Klingons 
launch ed the Su per a t three times light sp e e d  to w ard  
the re t rea t in g Federa t ion ship .

Two Federa t ion sp a c e  co lo n ies la y  b e tw een the Klin �
g ons a n d the poin t o f im pact of the Su p er with the Fe d �
era t ion ship . A  lo nely look out a t the first co lo ny wit �
n esse d with a w e the blinding p assa g e  o f the Su per 
(event 1). Later many ci t izens o f the seco n d colony 
g a p e d  as the Su p er de m olished o ne o f their communi �
cat ion structures (event 2) an d zo o m e d on. Both c o lo �
n ies d esp era t e ly  sent w arn in gs to w ard the Federa t ion  
ship , but to no ava il since the Su per au tran the rad io  
sig nals.

K littgon (**iaboratory ”) space t im e d i a gra m . The Kltngon worldline is 
the vertical time axis. The Treaty of Sha limar is followed four years la ter by 
the Great B etraya l {event 0 ) a t  which Klingons launch the Super, which moves 
a t  three times light speed. Traveling from left to right, the Super passes one 
Federation colony {event 1) and then another {event 2) . F inal ly the Super 
destroys the retreating ship of Federation negotiators {event

Finally , a t even t 3, the Su per over to o k an d d est ro ye d  
the Federa t ion ship . All Federa t ion neg o tia to rs w ere  
lost in a terrible f lash o f light an d scat t ering o f d e bris. A 
long d ark p erio d o f re n e w e d w ar f a re  b e g a n .

But wait! Look a g a in a t  even ts o f the G r e a t  Be t raya l , this 
time from the point o f v ie w of the Federa t ion rocke t 
ship . W h e re an d when d o es the G r e a t  Be t raya l occur in 
this fra m e? The G r e a t  Be trayal is the “ hinge of h ist o ry , ” 
the re f ere n ce even t , the z e ro  o f sp a c e an d time co ord i �
na tes for all la b o ra t o ry an d rocke t fra m es.

W h ere a n d when d o es the Su per e x p lo d e (event 3) in 
this rocke t f ra m e? In the Klingon “ l a b o ra t o ry ” frame , 
even t 3 has co ord in a t es X3  =  3 lig h t-years an d =  1 
y e a r .  U s e  t h e  i n v e r s e  L o r e n t z  t r a n s f o r m a t i o n  e q u a t i o n s  
to find the location o f even t 3 in the rocke t fram e o f the 
Fed era t ion ne g o tia to rs. Ca lc u la t e the time stretch f a c �
tor y  using sp e e d  o f the Federa t ion rocket , v,ei =  0 .6 , 
with resp ec t  to the Klingon frame :

1 1 1
^ [, _ ( o .6 )2]>/2 [ i - o .36]' '2

1
[0.64]’'2 0.8=  1.25



L.7 ADDITION OF VELOCITIES 1 0 9

^*Rocket” sp a c e tim e  d ia g r a m  o f  d e p a r t in g  F e d e r a t io n  n e g o tia to rs . In
this frame their destruction comes f irst {event 3) , followed by the passage of the 
Super from right to left past Federation colonies in reverse order (event 2  

followed by event 1). F inal ly, the Super enters the Klingon launcher without 
doing further damage {event 0) . The Great B etraya l has become the Great 
Confusion of Cause and Effect.

Substitute these values into e q ua tions (L-1 1) to reckon 
the rocke t co ord in a t es o f even t 3:

f ' 3  =  - V r e i y x a  +  yf3
=  —(0 .6 H 1 .25)(3 ye ars) +  (1 .25)(1 year)
=  —2 .2 5 y e a rs +  1 .25 y e a rs =  — 1 y e a r  

x'3 =  7x3 — v„|yt3
=  (1 .25)(3 y e ars) — (0 .6)(1 .25)(1 year)
=  3 .7 5  y e a rs — 0 .7 5  y e a r =  3 y e a rs

Event 3 is plo t ted in the rocket d iagra m an d the w o rld �
line of the Su per dra w n by connect ing even t 3 with the 
launching of the Su per a t even t 0 . N o tice that this 
w orld lin e slo p es d o w n w ard to the right. M ore ab o u t  
the sig nif icance o f this in a minute.

In a similar m anner find the rocke t co ord in a t es o f the

trea ty signing a t Shalim ar (subscrip t Sh), which has la b �
o ra t o ry co ord in a t es Xj^ =  0  an d tsh ~  y e a rs:

f’sh ~  ~  ''reiyxjh -h yfsh
=  - (0 . 6 )(1 . 2 5 )(0  y e a rs) -h (1 . 2 5 ) ( - 4  years)
=  — 5 y e a rs 

x'sh =  yxsh -  Vreiyfsh
=  (1 .25)(0 y e a rs) -  (0 . 6 )(1 . 2 5 )( - 4  ye ars)
=  - f 3  y e a rs

In the Federa t ion (rocket) sp ace ti m e d iag ra m , the 
w orld line o f Federa t ion neg o tia to rs ex t en ds from 
trea ty signing a t Shalim ar ver t ica lly to ex p losio n o f the 
Su per (event 3). The w orld lin e o f the Klingons ex t en ds 
from Shalim ar d ia g o n a lly through the launch o f the 
Su per a t even t 0.

In the Fed era t ion sp ace tim e d iag ra m , the w orld lin e for 
the Su per tilts d o w n w ard to the right. In this frame 
d e a ths o f Federa t ion neg o tia to rs (event 3) occur a t a  
time f' 3  =  m i n us 1 y e a r ,  that is, b e f o r e  the t reach ero us 
Klingons launch the Su per a t the even t o f G r e a t  Be �
t raya l (re f ere nce even t 0). From the d iag ra m o ne would 
sa y  that the Su per moves with three times light sp e e d  
f r o m  Federa t ion ship t o w a r d  the Klingons. This se e ms to 
be verif ied by the fact that in this f ra m e the Su per 
p asses Federa t ion co lo n ies in r e v erse o rd er , even t 2 
f o llo w ed by even t 1 , going in the o p p osit e direct ion . 
Ye t Fed era t ion neg o tia to rs have cre a t e d  no such terri �
b le w e a p o n an d in fact a re  d est ro ye d by it a t  the mo �
ment they a re  su p p ose d to launch it, as p ro ve d by the 
flying photons an d d e bris. M ore : Klingons suf fer no 
d a m a g e from the mighty im pact o f the slau gh tering  
Su per (event 0). Rather, in this f ra m e it en te rs their 
launching cannon mild as a lamb .

W h a t have w e h e re? A confusion o f c a use an d ef fect , a 
confusion that canno t b e stra ig h te ned out as long as w e 
assu m e that the Su p er —  or a n y o ther m ateria l o b jec t 
—  travels f ast er than light in a vacuum.

W hy d o es no signal an d no o b je c t  travel f ast er than 
light in a vacuu m? Be ca use if ei ther signal or o b je c t  did 
so , the entire network of ca use an d ef fect would be 
d est ro y e d , an d sc ie nce as w e know it would not b e 
p ossib le .
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relative to the laboratory comes from the expression

V e lo c i t y  a d d i t i o n  p a r a d o x  
r eso lv e d

4 /5  +  4 /5 8/5 8/5 40

1 +  (4/5X 4/5) 1 +  16/25 41/25 41

Thus the bullet moves in the laboratory at a speed less than light speed.
As a limiting case, suppose that the “bullet” shot out from the front of the rocket is, 

in fact, a pulse of light. Guess: What is the speed of this light pulse in the laboratory? 
Here is the calculated answer. Light moves with respect to the rocket at speed f ' = l  
while the rocket continues along at a speed =  4 /5  with respect to the laboratory. 
The light then moves with respect to the laboratory at speed p :

Lig ht sp e e d  is i n v a r ia n t , 
a s e x p e c t e d .

1 +  4 /5  _  9 /5  _

l + ( l ) ( 4 / 5 )  9 /5  ~

So light moves with the same speed in both frames, as required by the Principle of 
Relativity. Question: Is this true also when a light pulse is shot out of the rear of the 
rocket?

S AMPL E  PROB L EM  L-3

T HE F I R I N G  M E S O N
A K° (pronounced “K-naught”) meson at rest in a 
rocket frame decays into 7T'*' (“pi plus”) meson 
and a 7l~ (“pi minus”) meson, each having a 
speed of =  0.85 with respect to the rocket. Now 
consider this decay as observed in a laboratory with

SOLUTIO N

respect to which the K° meson travels at a speed of 
t'rei ~  0.9. What is the greatest speed that one of 
the n  mesons can have with respect to the labora-
tory? What is the least speed?

Let the speeding fC°-meson move in the positive x-direction in the laboratory. In the 
rocket frame, daughter TT-mesons come off in opposite directions. Their common line of 
motion can, however, be oriented arbitrarily in this frame. The maximum speed of a 
daughter TT-meson in the laboratory results when it is emitted in the forward x-direction. 
For such a meson, the law of addition of velocities gives

V + 0.85 +  0.9 1.75

1 +  (0.85)(0.9) 1.765
=  0.9915

Thus adding a speed of 0.85 to a speed of 0.9 does not yield a resulting speed greater than 
1, light speed.

The slowest laboratory speed for a daughter meson occurs when it is emitted in the 
negative x-direction in the rocket frame. In this case the velocity of the daughter meson is 
negative and the law of addition of velocities becomes a law of subtraction of velocities:

V +  V,
^min , /

\ —  V v„

rel -0.85 +  0.9 0.05

1 -  (0.85K0.9) 0.235
0.2128

Although the minimum-speed meson moves to the left in the rocket, it moves to the right 
in the laboratory because of the very great speed of the original fC°-meson in the 
laboratory.
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L.8 SUMMARY
Loren tz transform a t io n d e a ls w ith co ord ina tes, 
not in v a ria n t  q uan t i t ies

Given the space and time coordinates of an event with respect to the reference event in 
one free-float frame, the Lorentz coord inate  transfo rm ation  equations tell us 
the coordinates of the same event in an overlapping free-float frame in relative motion 
with respect to the first. The equations that transform rocket coordinates (primed 
coordinates) to laboratory coordinates (unprimed coordinates) have the form

v„,x■' +  /

(1 ) l / 2

(1 V ) l / 2
rel

and

(L-lOb)

where stands for relative speed of the two frames (rocket moving in the positive 
x-direction in the laboratory). The inverse Lorentz transfo rm ation  equations 
transform laboratory coordinates to rocket coordinates:

/' =

(1
� y and

(L-11b)

in which is treated as a positive quantity. In both these sets of equations, coordi-
nates of events are measured with respect to a reference event. It is really only the 
difference in coordinates between events that matter, for example %2 ~  =  Ax for any
two events I and 2, not the coordinates themselves. This is important in deriving the 
Law of Addition of Velocities.

The Law o f A ddition o f Velocities or Law o f C om bination o f V elocities in
one dimension follows from the Lorentz transformation equations. This law tells us the 
velocity of a particle in the laboratory frame if we know its velocity v' with respect to 
the tocket and relative speed between rocket and laboratory.

1 +  v t (L-13)

REFERENCE
Sample Problem L-3, The Firing Meson, was adapted from A. P. French, Special 
Relativity (W.W. Norton, New York, 1968), page 159.
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SPECIAL TOPIC EXERCISES

PRACTICE
L-1 a su per-speed su p er?
Take two more steps in the parable of the Great 
Betrayal (Box L-1).

a  Find the speed of a new rocket frame moving 
relative to the Klingon frame such that the Super 
travels at 6 times the speed of light in this new frame. 
Hint: Examine the coordinates x '  and t '  of event 3 in 
the new frame. The ratio of these two, x ' / t ' , is the 
speed of the Super in this frame. We know the coor-
dinates of event 3 in the Klingon frame. There-
fore . . .

b Find the speed of yet another rocket frame, 
relative to the Klingon frame, such that the Super 
travels with infinite speed in this frame. Hint: What 
does infinite speed imply about the time t '  between 
events 0 and 3 in this new frame?

L-2 a bad clock
Note: This exercise uses spacetime diagrams, intro-
duced in Chapter 5.

A pulse of light is reflected back and forth between 
mirrors A  and B separated by 2 meters of distance in 
the ^-direction in the Earth frame, as shown in the 
figure (left). A swindler tells us that this device con-
stitutes a clock that “ticks” every time the pulse 
arrives at either mirror.

The swindler claims that events 1 through 6 are 
sequential “ticks” of this clock (center). However, we 
notice that the ticking of the clock is uneven in a 
rocket frame moving with speed in the Earth 
frame (right). For example, there is less time between 
events 0 and 1 than between events 1 and 2 as mea-
sured in the rocket frame.

a  What is the physical basis for the “bad” be-
havior of this clock? Use the Lorentz transformation

mirror A

2 meters

light
pulse

mirror 6

E A RT H  FR A M E R O C K E T  FR A M E
EXERCISE L-2. he ft :  Horizonta l light-pulse clock as observed in the E arth frame. C enter:  Spacetime diagram showing worldlines of mirrors 
A and B and the “uniformly ticking” light pulse as observed in the E arth frame. R ight :  Time lapses between sequent ial ticks ofthe light-pulse 
clock are not uniform as observed in the rocket frame.
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equations to account for the uneven ticking of this 
clock in the rocket frame.

b Use some of the same events 0 through 4 to 
define a “good” clock that ticks evenly in both the 
laboratory frame and the rocket frame. From the 
spacetime diagrams, show qualitatively that your 
good clock “runs slow” as observed from the rocket 
frame —  as it must, since the clock is in motion with 
respect to the rocket frame.

C Explain why the clock of Figure 1 -3 in the text 
is a “good” clock.

L-3 the G a li le a n  transform ation
a  Use everyday, nonrelativistic Newtonian ar-

guments to derive transformation equations between 
reference frames moving at low relative velocities. 
Show that the result is

{N ewtonian: «  c) {1)

(Newtonian: «  c) (2)

where is time measured in seconds and is 
speed in conventional units (meters/second for exam-
ple). List the assumptions you make in your deriva-
tion.

b Convert equations (1) and (2) to measure time 
t in meters and unitless measure of relative velocity, 
frei “  Non/'"- Show the tesults are:

x ' =  X —  t (Newtonian: v «  1) (3)

t ' —  t (Newtonian: V «  1) (4)

Do the new units make these equations correct at 
high relative velocity between frames?

C Use the first two terms in the binomial expan-
sion to find a low-velocity approximation for /  in the 
Lorentz transformation.

y-
1

(1 -

(1 -  v i y 1 / 2 1

Show that this expression differs from unity by less 
than one percent provided p is less than 1/7. A sports 
car can accelerate uniformly from rest to 60 miles/ 
hour (about 27 meters/second) in 7 seconds. 
Roughly how many days would it take for the sports 
car to reach y =  1/7 at the same constant accelera-
tion?

d Set 7 =  1 in the Lorentz transformation equa-
tions. Show that the resulting “low-velocity Lorentz 
transformation” is

x ' —  X — t (Lorentz: v «  1) (5)

t ' =  — v^^x y  t (Lorentz: v «  1) (6)

What is the difference between the time transfor-
mations for the “Newtonian low-velocity limit” of 
equation (4) and the “Lorentz low-velocity limit” of 
equation (6)? How can they both be correct? The term 

does not depend on any time lapse, but only on 
the separation x  of the event from the laboratory 
origin. This term is due to the difference of synchroni-
zation of clocks in the two frames.

e  In each of the following cases a laboratory 
clock (measuring /) at a distance x  from the origin as 
measured in the laboratory frame is compared with a 
passing rocket clock (measuring / ) .  Say whether or 
not the time difference t — t ' =  v̂ ^̂ x can be detected 
using wristwatches (accuracy of 10~  ̂second =  3 X 
10  ̂ meters of light-travel time) and using modern 
electronic clocks (accuracy of 10“  ̂ second =  0.3 
meter of time).

(1) Sports car traveling at 100 kilometers/hour 
(roughly 30 meters/second) located 1000 
kilometers down the road from the origin as 
measured in the Earth frame.

(2) Moon probe traveling at 30,000 kilometers/ 
hour passing Moon, 3.8 X 10’ kilometers 
from the origin on Earth as measured in the 
Earth frame.

(3) Distance from origin on Earth at which space 
probe traveling at 30,000 kilometers/hour 
leads to detectable time difference between 
rocket wristwatch and adjacent Earth-linked 
latticework clock. Compare with Earth-Sun 
distance of 1.5 X 10“  meters.

f  Summarize in a sentence or two the conditions 
under which the regular Galilean transformation 
equations (3) and (4) will lead to correct predictions.

L-4 limits off N ewtonian 
mechanics

Use the particle speed =  1 /7  (Exercise L-3) as an 
approximate maximum limit for the validity of 
Newtonian mechanics. Determine whether or not 
Newtonian mechanics is adequate to analyze motion 
in each of the following cases, following the example.

Example: Satellite circling Earth at 30,000 
kilometers/hour =  18,000 miles/hour. Answer: 
Light moves at a speed =  (3 X 10’ kilometers/ 
second) X (3600 seconds/hour) =  1.08 X 10  ̂
kilometers/hour. Therefore the speed of the satellite 
in meters/metet is v — Nonv/'" ~  2.8 X 10~’. This
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is much less than =  1/7, so the Newtonian de-
scription of satellite motion is adequate.

a  Earth circling Sun at an orbital speed of 30 
kilometers/second.

b Electron circling a proton in the orbit of small-
est radius in a hydrogen atom. Discussion: The 
classical speed of the electron in the inner orbit of an 
atom of atomic number Z, where Z is the number of 
protons in the nucleus, is given, for low velocities, by 
the expression v =  Z / \ ^ l . For hydrogen, Z =  1.

c Electron in the inner orbit of the gold atom, for 
which Z =  79.

d  Electron after acceleration from rest through a 
volrage of 5000 volts in a black-and-white television 
picture tube. Discussion: We say that this electron 
has a kinetic energy of 5000 electron-volts. One elec-
tron-volt is equal to 1.6 X  10“ ^̂  joule. Try using the 
Newtonian expression for kinetic energy.

e  Electron after acceleration from rest through a 
voltage of 25,000 volts in a color television picture 
tube.

f  A proton ot neutton moving with a kinetic 
energy of 10 MeV (million electron-volts) in a nu-
cleus.

PROBLEMS
L-5 Doppler shif t
A sparkplug at rest in the rocket emits light with a 
frequency/'’ pulses or waves per second. W hat is the 
frequency / of this light as observed in the laboratory? 
Let this train of waves (or pulses) of light travel in the 
positive x-direction with speed c, so that in the course 
of one meter of light-travel time, f / c  of these pulses 
pass the origin of the laboratory frame. It is under-
stood that the zeroth or “fiducial’ ’ crest or pulse passes 
the origin at the zero of time— and that the origin of 
the rocket frame passes the origin of the laboratory 
frame at this same time.

a  Show that the x-coordinate of the «th pulse or 
wave crest is related to the time of observation t  (in 
meters) by the equation

n =  (//c)(r — x)

b The same argument, applied in the rocket 
frame, leads to the relation

n =  — x'}

Express this rocket formula in laboratory coordi-
nates X  and t  using the Lorentz transformation. 
Equate the resulting expression f o r / ' to the labora-

tory formula for /  in terms of x  and t to derive the 
simple formula for/in terms of f '  and , the relative
speed of laboratory and rocket frames.

(wave moves in 
positive x-d irection]

e Now observe a wave moving along the nega-
tive x-direction from the same source at rest in the 
rocket frame. Show that the frequency of the wave 
obsetved in the laboratoty frame is

/ d F " ' " '+  '̂rel/
[wove moves in 

negat ive x-d irection]

d Astronomers define the redsh ift z of light 
from a receding astronomical object by the formula

_fendt /obs

fobs

Here/nut is the frequency of the light measured in 
the frame in which the emitter is at rest and /^s the 
frequency observed in another frame in which the 
emitter moves directly away from the observet.

The most distant quasar reported as of 1991 has a 
tedshift z =  4.897. With what fraction of the speed 
of light is this quasar receding from us?
Reference: D. P. Schneider, M. Schmidt, and J. E. Gunn, Astronomi-
cal Journal, Volume 102, pages 8 3 7 -8 4 0  (1991).

L-6 transform at ion of an g les
a  A meter stick lies at rest in the rocket frame 

and makes an angle (/)' with the x'-axis. Laboratory 
observers measure the x- andy-projections of the stick 
as it streaks past. W hat values do they measure for 
these projections, compared with the x '-  and ''-pro-
jections measuted by rocket observers? Therefore 
what angle (f) does the same meter stick make with 
the x-axis of the laboratory frame? What is the length 
of the “meter stick’’ as observed in the laboratory 
frame?

b Make the courageous assumption that the di-
rections of electric-field lines around a point charge 
transform in the same way as the directions of meter 
sticks that lie along these lines. (Electric field lines 
around a point charge are assumed to be infinite in 
length, so the length transformation of part a does not 
apply.) Draw qualitatively the electric-field lines due 
to an isolated positive point charge at rest in the rocket 
frame as observed in (1) the rocket frame and (2) the 
laboratory frame. What conclusions follow concern-
ing the time variation of electric forces on nearby 
charges at rest in the laboratory frame?
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L>7 transform at ion of y-veloci ty
A particle moves with uniform speed v'̂  =  ts.y'/ lS.t' 
along the;/'-axis of the rocket frame. Transform lS.y' 
and A /  to laboratory displacements A x , A y , and A /  
using the Lorentz transformation equations. Show 
that the x-component and the y-component of the 
velocity of this particle in the laboratory frame are 
given by the expressions

‘'rel

< (1

L-8 transform at ion of ve loci t y  
direct ion

A particle moves with velocity v' in the x 'y ' plane of 
the rocket frame in a direction that makes an angle (f)' 
with the x'-axis. Find the angle (f) that the velocity 
vector of this particle makes with the x-axis of the 
laboratory frame. (Hint: Transform space and time 
displacements rather than velocities.) Why does this 
angle differ from that found in Exercise L-6 on trans-
formation of angles? Contrast the two results when 
the relative velocity between the rocket and labora-
tory frames is very great.

L-9 the head lig h t ef fect
A flash of light is emitted at an angle (f)' with respect 
to the x'-axis of the rocket frame.

a  Show that the angle (f) the direction of motion 
of this flash makes with respect to the x-axis of the 
laboratory frame is given by the equation

cos (/) =
cos (/)' + rel

1 + (f)'

b Show that your answer to Exercise L-8 gives 
the same result when the velocity v ' is given the value 
unity.

c A particle at rest in the rocket ftame emits light 
uniformly in all directions. Consider the 50 percent of 
this light that goes into the forward hemisphere in the 
rocket frame. Show that in the labotatory frame this 
light is concentrated in a narrow forward cone of 
half-angle (f)g whose axis lies along the direction of 
motion of the particle. The half-angle (j)„ is the solu-
tion to the following equation:

cos (/)„ =

This result is called the headligh t effect.

L-10 the t i l t ed meter st ick
Note: This exercise uses the results of Exercise L-7.

A meter stick lying parallel to the x-axis moves in 
the y-direction in the laboratory frame with speed 
as shown in the figure (left).

a  In the rocket frame the stick is tilted upw ard in 
the positive x'-direction as shown in the figure 
(right). Explain why this is, first without using equa-
tions.

b Let the center of the meter stick pass the point 
X =  y =  x ' =  y ' =  0 at time t =  t '  =  0. Calculate 
the angle <f>' at which the meter stick is inclined to the 
x'-axis as observed in the rocket frame. Discussion: 
Where and when does the right end of the meter stick 
cross the x-axis as observed in the laboratory frame? 
Where and when does this event of right-end crossing 
occur as measured in the rocket frame? What is the 
direction and magnitude of the velocity of the meter 
stick in the rocket frame (Exercise L-7)? Therefore 
where is the right end of the meter stick at / '  =  0 , 
when the center is at the origin? Therefore . . .

EXERCISE L-10. L eft: Meter stick moving transverse to its length as observed in the laboratory frame. 
R ight :  Meter stick as observed in rocket frame.
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L-1 1 the risin g manhole
Note: This exercise uses the results of Exercise L-10.

A meter stick lies along the x-axis of the laboratory 
frame and approaches the origin with velocity . A 
very thin plate parallel to the xz laboratory plane 
moves upward in the y-direction with speed Vy as 
shown in the figure. The plate has a circular hole with 
a diameter of one meter centered on the y-axis. The 
center of the meter stick arrives at the laboratory 
origin at the same time in the laboratory frame as the 
rising plate arrives at the plane y =  0. Since the meter 
stick is Lorentz-contracted in the laboratory frame it 
will easily pass through the hole in the rising plate. 
Therefore there will be no collision between meter 
stick and plate as each continues its motion. However, 
someone who objects to this conclusion can make the 
following argument: “In the rocket frame in which 
the meter stick is at rest the meter stick is not con-
tracted, while in this frame the hole in the plate is 
Lorentz-contracted. Hence the full-length meter stick 
cannot possibly pass through the contracted hole in 
the plate. Therefore there must be a collision between 
the meter stick and the plate.’’ Resolve this paradox 
using your answer to Exercise L-10. Answer unequiv-
ocally the question, Will there be a collision between 
the meter stick and the plate?
Reference: R. Shaw, American Journal o f Physics, Volume 30, page 
72 (1962).

L-12 p ara d o x of the
sk a t e b o ard an d the grid

A girl on a skateboard moves very fast, so fast that the 
relativistic length contraction makes the skateboard 
very short. On the sidewalk she has to pass over a grid. 
A man standing at the grid fully expects the fast short 
skateboard to fall through the holes in the grid. Y et to 
the fast girl her skateboard has its usual length and it 
is the grid that has the relativistic contraction. To her

the holes in the grid are much narrower than to the 
stationary man, and she certainly does not expect her 
skateboard to fall through them. Which person is 
correct? The answer hinges on the relativity of rigidity.

Idealize the problem as a one-meter rod sliding 
lengthwise over a flat table. In its path is a hole one 
meter wide. If the Lorentz contraction factor is ten, 
then in the table (laboratory) frame the rod is 10 
centimeters long and will easily drop into the one- 
meter-wide hole. Assume that in the laboratory frame 
the meter stick moves fast enough so that it remains 
essentially horizontal as it descends into the hole (no 
“ tipping’’ in the laboratory frame). Write an equa-
tion in the laboratory frame for the motion of the 
bottom edge of the meter stick assuming that t =  
/ '  =  0 at the instant that the back end of the meter 
stick leaves the edge of the hole. Eor small vertical 
velocities the rod will fall with the usual acceleration 
g. Note that in the laboratory frame we have assumed 
that every point along the length of the meter stick 
begins to fall simultaneously.

In the meter stick (rocket) frame the rod is one 
meter long whereas the hole is Lorentz-contracted to a 
10-centimeter width so that the rod cannot possibly 
fit into the hole. Moreover, in the rocket frame differ-
ent parts along the length of the meter stick begin to 
drop ar different times, due to the relativity of simul-
taneity. Transform rhe laboratory equations into the 
rocket frame. Show that the front and back of the rod 
will begin to descend at different times in this frame. 
The rod will “droop” over the edge of the hole in the 
rocket frame — that is, it will not be rigid. Will the 
rod ultimately descend into the hole in both frames? Is 
the rod really rigid or nonrigid during the experiment? 
Is it possible to derive any physical characteristics of 
the rod (for example its flexibility or compressibility) 
from the description of its motion provided by rela-
tivity?
Reference: W . Rindler, American Journal o f Physics, Volume 29, 
page 3 6 5 -3 6 6  (1961).

E X ER C ISE L - 1 1 . W ill  the “meter s t ic k ” pass 
through the “one-meter~diameter" hole w ith -
out collision?
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L-13 p ara d o x off the id e n t ica lly  
acce lera t e d tw ins

N ote: This exercise uses spacetime diagrams, intro-
duced in Chapter 5.

Two fraternal twins, Dick and Jane, own identical 
spaceships each containing the same amount of fuel. 
Jane’s ship is initially positioned a distance to the right 
of Dick’s in the Earth frame. On their twentieth 
birthday they blast off at the same instant in the Earth 
frame and undergo identical accelerations to the right 
as measured by Mom and Dad, who remain at home 
on Earth. Mom and Dad further observe that the 
twins run out of fuel at the same time and move 
thereafter at the same speed v. Mom and Dad also 
measure the distance between Dick and Jane to be the 
same at the end of the trip as at the beginning.

Dick and Jane compare the ships’ logs of their 
accelerations and find the entries to be identical. 
However when both have ceased accelerating, Dick 
and Jane, in their new rest frame, discover that Jane is 
older than Dick! How can this be, since they have an 
identical history of accelerations?

a  Analyze a simpler trip, in which each spaceship 
increases speed not continuously but by impulses, as 
shown in the first spacetime diagram and the event 
table. How far apart are Dick and Jane at the begin-
ning of their trip, as observed in the Earth frame? 
How far apart are they at the end of their accelera-
tions? What is the final speed v (not the average 
speed) of the two spaceships? How much does each 
astronaut age along the worldline shown in the dia-
gram? (The answer is not the Earth time of 12 years.)

b The second spacetime diagram shows the two 
worldlines as recorded in a rocket frame moving with 
the final velocity of the two astronauts. Copy the 
figure. On your copy extend the worldlines of Dick 
and Jane after each has ceased accelerating. Label your 
figure to show that Jane ceased accelerating before 
Dick as observed in this frame. Will Dick age the 
same between events 0 and 3 in this frame as he aged 
in the Earth frame? Will Jane age the same between 
events 4 and 7 in this frame as she aged in the Earth 
frame?

c Now use the Lorentz transformation to find 
the space and time coordinates of one or two critical 
events in this final rest frame of the twins in order to 
answer the following questions

(1) How many years earlier than Dick did Jane 
cease accelerating?

(2) W hat is Dick’s age at event 3? (not the rocket 
time t '  oi this event!)

(3) What is Jane’s age at event 7?

(4) What is Jane’s age at the same time (in this 
frame) as event 3?

(5) What are the ages of Dick and Jane 20 years 
after event 3 , assuming that neither moves 
again with respect to this frame?

( 6 )  How far apart in space are Dick and Jane when 
both have ceased accelerating?

(7) Compare this separation with their initial (and 
final!) separation measured by Mom and Dad 
in the Earth frame.

d Extend your results to the general case in which 
Mom and Dad on Earth observe a period of identical 
continuous accelerations of the two twins.

(1) At the two start-acceleration events (the two 
events at which the twins start their rockets), 
the twins are the same age as observed in the 
Earth frame. Are rhey the same age at these 
events as observed in every rocket frame?

(2) At the two cease-acceleration events (the two 
events at which the rockets run out of fuel), are 
the twins the same age as observed in the Earth 
frame? Are they the same age at these events as 
observed in every rocket frame?

(3) The two cease-acceleration events are simulta-
neous in the Earth frame. Are they simulta-
neous as observed in every rocket frame? (No!) 
Whose cease-acceleration event occurs first as 
observed in the final frame in which both twins 
come to rest? (Recall the Train Paradox, Sec-
tion 3.4.)

(4) “ When Dick ceases accelerating, Jane is older 
than Dick.” Is this statement true according to 
the astronauts in their final rest frame? Is the 
statement true according to Mom and Dad in 
the Earth frame?

(5) Criticize the lack of clarity (swindle?) of the 
word when in the statement of the problem: 
‘‘However when both have ceased accelerat-
ing, Dick and Jane, in their new rest frame, 
discover that Jane is older than Dick!”

e  Suppose that Dick and J ane both accelerate to 
the left, so that Dick is in front of Jane, but their 
history is otherwise the same. Describe the outcome of 
this trip and compare it with the outcome of the 
original trip.

f  Suppose that Dick and J ane both accelerate in 
a direction perpendicular to the direction of their 
separation. Describe the outcome of this trip and 
compare it with the outcome of the original trip.
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Earth Frame O bservations

Even t x-p osi t io n Tim e
n u m b er (light y e a rs) (y ears)

0 0 0

1 1 4

2 3 8

3 6 12

4 12 0

5 13 4

6 15 8

7 18 12

R O C K E T  FR A M E
EXERCISE L-13. Top: Worldlines of D ick and Jane  as observed in the E arth frame of Mom and D ad. 
Bottom: Worldlines of D ick and Jane  as observed in the “f in a l "  rocket frame in which both D ick and Jane  
come to rest after burnout.

Discussion: Einstein postulated that physics in a 
uniform gravitational field is, locally and for small 
particle speeds, the same as physics in an accelerated 
frame of reference. In this exercise we have found that 
two accelerated clocks separated along the direction of 
acceleration do not remain in synchronism as observed 
simultaneously in their common frame. Rather, the 
forward clock reads a later time (“runs faster”) than 
the rearward clock as so observed. Conclusion from 
Einstein’s postulate: Two clocks one above the other

in a uniform gravitational field do not remain in 
synchronism; rather the higher clock reads a later time 
(“runs faster”) than the lower clock. General relativ-
ity also predicts this result, and experiment verifies it. 
(Read about the patrol plane experiment in Section 
4.10.)

Reference: S. P. Boughn, American Journal o f Physics, Volume 57, 
pages 7 9 1 -7 9 3  (September 1989). Reference to general relativity 
result: Wolfgang Rindler, Essential Relativity (Springer, New York,
1977), pages 17 and 117.
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L-14 how do rods Lorenlz- 
co n trac l?

Note: Calculus is used in the solution to this exercise; 
so is the formula for Lorentz contracrion from Section 
5,8.

Laboratory observers measure rhe length of a mov-
ing rod lying along its direction of motion in the 
laboratory frame. Then the rod speeds up a little. 
Again laboratory observers measure its length, which 
they find to be a little shorter than before. They call 
this shortening of length Lorentz contraction. How 
did this shortening of length come about.^ As happens 
so often in relativity, the answer lies in the relativity of 
simultaneity.

First, how much shortening takes place when the 
rod changes from speed v to speed v +  dv} Let be 
the proper length of the rod when measured at rest. At 
speed V its laboratory-measured length L will be 
shorter than this by the Lorentz contraction factor 
(Section 5.8):

L =  (l

a  Using calculus, show that when the rod speeds 
up from y to a slightly greater speed v +  dv, the 
change in length dL is given by the expression

dL =  -
L^vdv

(1 -  t̂ 2)l/2

The negative sign means that the change is a shorten-
ing of the rod. We want to explain this change in 
length.

How is the rod to be accelerated from v to v  dv̂ . 
Fire a rocket attached to the rear of the rod? No, Why 
not? Because the rocket pushes only against the rear of 
the rod; this push is transmitted along the rod to the 
front at the speed of a compression wave — very slow! 
We want the front and back to change speed “at the 
same time” (exact meaning of this phrase to be deter-
mined later). How can this be done? Only by 
prearrangement! Saw the rod into a thousand equal 
pieces and tap each piece in the forward direction with 
a mallet “at exactly 12 noon” as read off a set of 
synchronized clocks. To simplify things for now, set 
aside all but the front and back pieces of the rod. Now 
tap the front and back pieces ‘ ‘ at the same time. ’ ’ The 
change in length of the rod dL is then the change in 
distance between these two pieces as a result of the 
tapping. So much for how ro accelerare the “rod.”

Now the central question: What does it mean to 
tap the front and back pieces of the rod “at the same 
time”? To answer rhis question, ask another: What is 
our final goal? Answer: To account for the Lorentz

contraction of a fast-moving rod of proper length L„. 
More: We want a careful inspecror riding on the 
fast-moving rod to certify that it has the same proper 
length L(, as it did when it was at rest in the laboratory 
frame. To achieve rhis goal, the inspector insists that 
the pair of accelerating taps be applied to the front 
and back rod pieces at the same time in the current rest 
frame of the rod. Otherwise the distance between these 
pieces would not remain rhe same in the frame of the 
rod; the rod would change proper length. [Notice that 
in Exercise L-13 the taps occur at the same time in the 
laboratory (Earth) frame. This leads to results differ-
ent from those of the present exercise.}

b You are the inspector riding along with the 
front and back pieces of the rod. Consider the two 
events of tapping the front and back pieces. How far 
apart Ax' are these events along the x-axis in your 
(rocket) frame? How far apart A /' in time are these 
events in your frame? Predict how far apart in time Ar 
these events are as measured in the laboratory frame. 
Use the Lorentz transformation equation (L-10):

b it =  V yAx' +  y l \ t '

The relative velocity in equation (L-10) is just v, 
the current speed of the rod. In the laboratory frame is 
the tap on the rear piece earlier or later than the tap on 
the front piece?

Your answer to part b predicts how much earlier 
the laboratory observer measures the tap to occur on 
the back piece than on the front piece of the rod. Let 
the tap increase the speed of the back end by dv as 
measured in the laboratory frame. Then during labo-
ratory time Ar the back end is moving at a speed dv 
faster than the front end. This relative motion will 
shorten the distance between the back and front ends. 
After time interval At the front end receives the iden-
tical tap, also speeds up by dv, and once again moves 
at the same speed as the back end.

C Show that the shortening dL predicted by this 
analysis is

dL =  ~dvlS.t — —ybsx'vdv =  —vjL^dv 
Ljjdv

(1 - r ; 2)i/2

which is identical to the result of part a, which we 
wanted to explain. QED.

d Now start with the front and back pieces of the 
rod at rest in the laboratory frame and a distance L^ 
apart. Tap them repeatedly and identically. As they 
speed up, be sure these taps take place simultaneously 
in the rocket frame in which the two ends are currently 
at rest. (This requires you, the ride-along inspector, to
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resynchronize your rod-rest-frame clocks after each set 
of front-and-back taps.) Make a logically rigorous 
argument that after many taps, when the rod is mov-
ing at high speed relative to the laboratory, the length 
of the rod measured in the laboratory can be reckoned 
using the first equation given in this exercise.

e  Now, by stages, put the rod back together. 
The full thousand pieces of the rod, lined up but not 
touching, are all tapped identically and at the same 
time in the current rest frame of the rod. One set of 
taps increases the rod’s speed from p top -h dp in the 
laboratory frame. Describe the time sequence of these 
thousand taps as observed in the laboratory frame. If 
you have studied Chapter 6 or the equivalent, answer 
the following questions: What kind of interval — 
timelike, lightlike, or spacelike— separates any pair 
of the thousand taps in this set? Can this pair of taps 
be connected by a light flash? by a compression wave 
moving along the rod when the pieces are glued back 
together? Regarding the “logic of acceleration,” is 
there any reason why we should not glue these pieces 
back together? Done!

f  During the acceleration process is the reglued 
rod rigid—  unchanging in dimensions —  as observed 
in the rod frame? As observed in the laboratory frame? 
Is the rigidity property of an object an invariant, the 
same for all observers in uniform relative motion? 
Show how an ideal rigid rod could be used to transmit 
signals instantaneously from one place to another. 
What do you conclude about the idea of a “rigid 
body” when applied to high-speed phenomena?
Reference: Edwin F. Taylor and A. P. French, American Journa l of 
Physics, Volume 51, pages 889-893, especially the Appendix 
(1983).

L-15 the p lace w h ere both a g re e
At any instant there is just one plane in which both the 
laboratory and the rocket clocks agree.

a  By a symmetry argument, show that this plane 
lies perpendicular to the direction of relative motion. 
Using the Lorentz transformation equations, show 
that the velocity of this plane in the laboratory frame 
is equal to

=  —  [1  -  (1  -

b  Does the expression for p,=,> seem strange? 
From our everyday experience we might expect that 
by symmetry the “plane of equal time” would move 
in the laboratory at half the speed of the rocket. Verify 
that indeed this is correct for the low relative velocities 
of our everyday experience. Use the first two terms of

the binomial expansion

(1 +  z)” ~  1 +  «z for |z| «  1

to show that for low relative velocity, p,=,' p^ /2 .
c W hat isp,=,’ for the extreme relativistic case in 

which f'rei 1? Show that in this case is com-
pletely different from ^rel/2.

d  Suppose we want to go from the laboratory 
frame to the rocket frame in two equal velocity jumps. 
Try a first jump to the plane of equal laboratory and 
rocket times. Now symmetry does work: Viewed 
from this plane the laboratory and rocket frames 
move apart with equal and opposite velocities, whose 
magnitude is given by the equation in part a. A 
second and equal velocity jump should then carry us 
to the rocket frame at speed with respect to the 
laboratory. Verify this directly by using the Law of 
Addition of Velocities (Section L.7) to show that

P r . 1  —

P , = ,' +  P , = ,'

1 +  P , = ,'P , = , '

L-16 Fizeau ex p erim en t
Light moves more slowly through a transparent ma-
terial medium than through a vacuum. Let t'medium 
represent the reduced speed of light measured in the 
frame of the medium. Idealize to a case in which this 
reduced velocity is independent of the wavelength of 
the light. Place the medium at rest in a rocket moving 
at velocity p„ ,̂ to the right relative to the laboratory 
frame, and let light travel through the medium, also 
to the right. Use the Law of Addition of Velocities 
(Section L.7) to find an expression for the velocity p of 
the light in the laboratory frame. Use the first two 
terms of the binomial expansion

(1 -f- z)” ~  1 -b «z for |z| «  1

to show that for small relative velocity between the 
rocket and laboratory frames, the velocity p of the 
light with respect to the laboratory frame is given 
approximately by the expression

P ^m edium ^  ^ rc lf f  ^m edium )

This expression has been tested by Fizeau using 
water flowing in opposite directions in the two arms of 
an interferometer similar (but not identical) to the 
interferometer used later by Michelson and Morley 
(Exercise 3-12).
Reference: H. Fizeau, Comptes rendus, Volume 33, pages 349-355 
(1851). A fascinating discussion (in French) of some central themes 
in relativity theory—delivered more than fifty years before Einstein’s 
first relativity paper.


