
Figure 1. One MD5 operation. MD5 consists of 64
of these operations, grouped in four rounds of 16
operations. F is a nonlinear function; one function
is used in each round. Mi denotes a 32-bit block of
the message input, and Ki denotes a 32-bit
constant, different for each operation. <<<s
denotes a left bit rotation by s places; s varies for
each operation. denotes addition modulo 232.

As it is easy to generate MD5 collisions, it is possible for the person who created the file to create a
second file with the same checksum, so this technique cannot protect against some forms of
malicious tampering. In some cases, the checksum cannot be trusted (for example, if it was
obtained over the same channel as the downloaded file), in which case MD5 can only provide error-
checking functionality: it will recognize a corrupt or incomplete download, which becomes more
likely when downloading larger files.

Historically, MD5 has been used to store a one-way hash of a password, often with key
stretching.[47][48] NIST does not include MD5 in their list of recommended hashes for password
storage.[49]

MD5 is also used in the field of electronic discovery, to provide a unique identifier for each
document that is exchanged during the legal discovery process. This method can be used to replace
the Bates stamp numbering system that has been used for decades during the exchange of paper
documents. As above, this usage should be discouraged due to the ease of collision attacks.

MD5 processes a variable-length message into a
fixed-length output of 128 bits. The input message
is broken up into chunks of 512-bit blocks (sixteen
32-bit words); the message is padded so that its
length is divisible by 512. The padding works as
follows: first, a single bit, 1, is appended to the end
of the message. This is followed by as many zeros as
are required to bring the length of the message up
to 64 bits fewer than a multiple of 512. The
remaining bits are filled up with 64 bits
representing the length of the original message,
modulo 264.

The main MD5 algorithm operates on a 128-bit
state, divided into four 32-bit words, denoted A, B,
C, and D. These are initialized to certain fixed
constants. The main algorithm then uses each 512-
bit message block in turn to modify the state. The
processing of a message block consists of four
similar stages, termed rounds; each round is
composed of 16 similar operations based on a non-
linear function F, modular addition, and left
rotation. Figure 1 illustrates one operation within a
round. There are four possible functions; a
different one is used in each round:

Algorithm

https://en.wikipedia.org/wiki/File:MD5_algorithm.svg
https://en.wikipedia.org/wiki/Password#Form_of_stored_passwords
https://en.wikipedia.org/wiki/Key_stretching
https://en.wikipedia.org/wiki/Electronic_discovery
https://en.wikipedia.org/wiki/Bates_numbering
https://en.wikipedia.org/wiki/Padding_(cryptography)

 denote the XOR, AND, OR and NOT operations respectively.

The MD5 hash is calculated according to this algorithm.[50] All values are in little-endian.

// : All variables are unsigned 32 bit and wrap modulo 2^32 when calculating
var int s[64], K[64]
var int i

// s specifies the per-round shift amounts
s[0..15] := { 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22 }
s[16..31] := { 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20 }
s[32..47] := { 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23 }
s[48..63] := { 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 }

// Use binary integer part of the sines of integers (Radians) as constants:
for i from 0 to 63 do
 K[i] := floor(232 × abs (sin(i + 1)))
end for
// (Or just use the following precomputed table):
K[0.. 3] := { 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee }
K[4.. 7] := { 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501 }
K[8..11] := { 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be }
K[12..15] := { 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 }
K[16..19] := { 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa }
K[20..23] := { 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 }
K[24..27] := { 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed }
K[28..31] := { 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a }
K[32..35] := { 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c }
K[36..39] := { 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 }
K[40..43] := { 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05 }
K[44..47] := { 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 }
K[48..51] := { 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 }
K[52..55] := { 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1 }
K[56..59] := { 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1 }
K[60..63] := { 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }

// Initialize variables:
var int a0 := 0x67452301 // A
var int b0 := 0xefcdab89 // B
var int c0 := 0x98badcfe // C
var int d0 := 0x10325476 // D

// Pre-processing: adding a single 1 bit
append "1" bit to message
 // Notice: the input bytes are considered as bits strings,
 // where the first bit is the most significant bit of the byte.[51]

// Pre-processing: padding with zeros
append "0" bit until message length in bits ≡ 448 (mod 512)

// Notice: the two padding steps above are implemented in a simpler way
// in implementations that only work with complete bytes: append 0x80
// and pad with 0x00 bytes so that the message length in bytes ≡ 56 (mod 64).

Pseudocode

https://en.wikipedia.org/wiki/XOR
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Endianness

append original length in bits mod 264 to message

// Process the message in successive 512-bit chunks:
for each 512-bit chunk of padded message do
 break chunk into sixteen 32-bit words M[j], 0 ≤ j ≤ 15
 // Initialize hash value for this chunk:
 var int A := a0
 var int B := b0
 var int C := c0
 var int D := d0
 // Main loop:
 for i from 0 to 63 do
 var int F, g
 if 0 ≤ i ≤ 15 then
 F := (B and C) or ((not B) and D)
 g := i
 else if 16 ≤ i ≤ 31 then
 F := (D and B) or ((not D) and C)
 g := (5×i + 1) mod 16
 else if 32 ≤ i ≤ 47 then
 F := B xor C xor D
 g := (3×i + 5) mod 16
 else if 48 ≤ i ≤ 63 then
 F := C xor (B or (not D))
 g := (7×i) mod 16
 // Be wary of the below definitions of a,b,c,d
 F := F + A + K[i] + M[g] // M[g] must be a 32-bits block
 A := D
 D := C
 C := B
 B := B + leftrotate(F, s[i])
 end for
 // Add this chunk's hash to result so far:
 a0 := a0 + A
 b0 := b0 + B
 c0 := c0 + C
 d0 := d0 + D
end for

var char digest[16] := a0 append b0 append c0 append d0 // (Output is in little-endian)

Instead of the formulation from the original RFC 1321 shown, the following may be used for
improved efficiency (useful if assembly language is being used – otherwise, the compiler will
generally optimize the above code. Since each computation is dependent on another in these
formulations, this is often slower than the above method where the nand/and can be parallelised):

(0 ≤ i ≤ 15): F := D xor (B and (C xor D))
(16 ≤ i ≤ 31): F := C xor (D and (B xor C))

The 128-bit (16-byte) MD5 hashes (also termed message digests) are typically represented as a
sequence of 32 hexadecimal digits. The following demonstrates a 43-byte ASCII input and the
corresponding MD5 hash:

MD5("The quick brown fox jumps over the lazy dog") =
9e107d9d372bb6826bd81d3542a419d6

MD5 hashes

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog

Even a small change in the message will (with overwhelming probability) result in a mostly
different hash, due to the avalanche effect. For example, adding a period to the end of the sentence:

MD5("The quick brown fox jumps over the lazy dog.") =
e4d909c290d0fb1ca068ffaddf22cbd0

The hash of the zero-length string is:

MD5("") =
d41d8cd98f00b204e9800998ecf8427e

The MD5 algorithm is specified for messages consisting of any number of bits; it is not limited to
multiples of eight bits (octets, bytes). Some MD5 implementations such as md5sum might be
limited to octets, or they might not support streaming for messages of an initially undetermined
length.

Below is a list of cryptography libraries that support MD5:

Botan
Bouncy Castle
cryptlib
Crypto++
Libgcrypt
Nettle
OpenSSL
wolfSSL

Comparison of cryptographic hash functions
Hash function security summary
HashClash
MD5Crypt
md5deep
md5sum
MD6
SHA-1
SHA-2

1. Rivest, R. (April 1992). "Step 4. Process Message in 16-Word Blocks" (https://tools.ietf.org/html

Implementations

See also

References

https://en.wikipedia.org/wiki/Avalanche_effect
https://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Md5sum
https://en.wikipedia.org/wiki/Botan_(programming_library)
https://en.wikipedia.org/wiki/Bouncy_Castle_(cryptography)
https://en.wikipedia.org/wiki/Cryptlib
https://en.wikipedia.org/wiki/Crypto%2B%2B
https://en.wikipedia.org/wiki/Libgcrypt
https://en.wikipedia.org/wiki/Nettle_(cryptographic_library)
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/WolfSSL
https://en.wikipedia.org/wiki/Comparison_of_cryptographic_hash_functions
https://en.wikipedia.org/wiki/Hash_function_security_summary
https://en.wikipedia.org/wiki/HashClash
https://en.wikipedia.org/wiki/Crypt_(C)#MD5-based_scheme
https://en.wikipedia.org/wiki/Md5deep
https://en.wikipedia.org/wiki/Md5sum
https://en.wikipedia.org/wiki/MD6
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Ron_Rivest
https://tools.ietf.org/html/rfc1321#section-3.4
Brian Hill

Brian Hill
On Following Page: Wikipedia’s Discussion of Cryptographic Hash Properties

A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In
theoretical cryptography, the security level of a cryptographic hash function has been defined using
the following properties:

Pre-image resistance
Given a hash value h, it should be difficult to find any message m such that h = hash(m).
This concept is related to that of a one-way function. Functions that lack this property are
vulnerable to preimage attacks.

Second pre-image resistance
Given an input m1, it should be difficult to find a different input m2 such that
hash(m1) = hash(m2). This property is sometimes referred to as weak collision resistance.
Functions that lack this property are vulnerable to second-preimage attacks.

Collision resistance
It should be difficult to find two different messages m1 and m2 such that
hash(m1) = hash(m2). Such a pair is called a cryptographic hash collision. This property is
sometimes referred to as strong collision resistance. It requires a hash value at least twice as
long as that required for pre-image resistance; otherwise collisions may be found by a
birthday attack.[4]

Collision resistance implies second pre-image resistance but does not imply pre-image
resistance.[5] The weaker assumption is always preferred in theoretical cryptography, but in
practice, a hash-function which is only second pre-image resistant is considered insecure and is
therefore not recommended for real applications.

Informally, these properties mean that a malicious adversary cannot replace or modify the input
data without changing its digest. Thus, if two strings have the same digest, one can be very
confident that they are identical. Second pre-image resistance prevents an attacker from crafting a
document with the same hash as a document the attacker cannot control. Collision resistance
prevents an attacker from creating two distinct documents with the same hash.

A function meeting these criteria may still have undesirable properties. Currently, popular
cryptographic hash functions are vulnerable to length-extension attacks: given hash(m) and
len(m) but not m, by choosing a suitable m ′ an attacker can calculate hash(m ∥ m ′), where ∥
denotes concatenation.[6] This property can be used to break naive authentication schemes based
on hash functions. The HMAC construction works around these problems.

In practice, collision resistance is insufficient for many practical uses. In addition to collision
resistance, it should be impossible for an adversary to find two messages with substantially similar
digests; or to infer any useful information about the data, given only its digest. In particular, a hash
function should behave as much as possible like a random function (often called a random oracle
in proofs of security) while still being deterministic and efficiently computable. This rules out
functions like the SWIFFT function, which can be rigorously proven to be collision-resistant
assuming that certain problems on ideal lattices are computationally difficult, but, as a linear
function, does not satisfy these additional properties.[7]

Checksum algorithms, such as CRC32 and other cyclic redundancy checks, are designed to meet
much weaker requirements and are generally unsuitable as cryptographic hash functions. For
example, a CRC was used for message integrity in the WEP encryption standard, but an attack was

https://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Collision_resistance
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-FOOTNOTEKatzLindell2014155%E2%80%93157,_190,_232-4
https://en.wikipedia.org/wiki/Adversary_(cryptography)
https://en.wikipedia.org/wiki/Length_extension_attack
https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/Random_function
https://en.wikipedia.org/wiki/Random_oracle
https://en.wikipedia.org/wiki/SWIFFT
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-FOOTNOTELyubashevskyMicciancioPeikertRosen200854%E2%80%9372-7
https://en.wikipedia.org/wiki/CRC32
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Wired_Equivalent_Privacy
Brian Hill

