 CONFIDENTIAL

WAR DITPARTMGANT*
OFFICE OF THR CHITFP SIGEAL OFFICER
hashingron

\therefore TRI IV

by
WILLIAM H . FRI
Principal Cxyptanilivt,
SIGTAL INTETLIGGNCE: . 'ICE
Prepared under the direction of the Chie: Signe. officur.
(PRTMTMINARY BDITION)
NOTE: Stucents are earnestly requested to make noté of all eirr. us ami obscure points in this text and to advise the instructor, so thei sorrections may be made in the printed edition.

* *
* *
*
*

Notice. - This document contains information affecting the national defense of the United States within the meaning of the Espionage Act (U.S.C. 50: 31, 32). The transmission of this document or the ievelation of its contents in any manner to any unauthorized person is prohibited.

This document is re-graded "eomidntini" UP of DOD Directive 5200.1 dated 8 July 1957, and by authority of the Director, National Security Agency.

Paul S. Willard Colonel, AGC Adjutant General

CONFIDENTHAL

MILITARI CRYPTANALYSIS, PART IV TRANSPOSITION AND FRACTIONATING SYSTETAS

CONTHNTS

Section	2 Paragraphs	Pages	
I.	General ..	1-5	$1-5$
II.	Solution of sample transposition ciphers ... 4-11	6-27	
III.	Incompletely-filled rectangles 12-16	28-48	
IV.	Opyortunities afforded by studying errors and blunders made by enemy cryptographers .. 17-19	49-54	
V.	Special solutions for transposition ciphers 20-29	55-92	55-69
VI.	Miscellanoous transposition ciphers 30-34	93-108	
VII.	Combined substitution-transposition systems 35-36	109-113	
VIII.	Solution of the ADFGVX system 37-43	114-177	114-130
IX.	Solution of the bifid fractionating system - 44-51	178-217	
	Analytical key	218	
	Index	219-221	

REF ID:A56913

SBCTICN 1 .
generai
Paragraph
e
-
Introductory remarks concerming transposition ciphers1
Basic mechanism of transposition ciphers 2
Monophase and polyphase transposition 3

1. Introductory remarks concerning transposition cuphers. - a. As stated in a previous text, transposition ciphers are roughly analogous to "jig-saw puzzles" in that all the pieces of which the original is composed are present but are merely disarranzed. The pieces into which the picture forming the basis of a jig-saw puzzle may be divided are usually quite irregular in size and shape, the greater the amount of irregularity, as a rule, the greater the difficulty in reassembling the pleces in proper order. In this rospect, too, transposition ciphers are analogous to jig-saw puzzles, for the greater the amount of distortion to which the plann text is subjected in the transposition process, the more difficult becomes the solution.
b. In jig-saw puzzles there is usually no regularity about the size of the individual pleces into which the original picture has been cut, and this feature, of course, materially contributes to the difficulty in roconstructing the picture. There are, to be sure, limits (dictated by considerations of practicability) whach sorve to prevent the pieces being made too small, for then they would become unmanageable; on the other hand, thers are also limits which must be observed in rospoct to the upyer magnitude of the

REF ID-: A56913

pieces, for if they are made too large the puzzle becomes too easy to solve. These features of jig-saw puzales also have their analogies in transposition methods. In the latter, if the textual units to be subjected to transposition are made quite large, say entire sentences, the difficulties a cryptanalyst will have in reconstructing the text are practically nil; on the other hand, if these textual units are made quite small, even smaller than single letters ${ }^{1}$, then the reconstruction of the transposition text by a cryptenalyst often becomes a very difficult matter. In between these two extranes there may be verious degrees of fragmentation, limited only by considerations of practicability.
c. It is rortunate, however, thnt the cryptanalyst does not, as a rulo, have to contend with probloms in which the size of the textual units rarles within the samo message, as is the case in jigsaw puzzles. It 1a perhaps possibio to devise a transposition system in which the text is divided up in such a manner that entire sentences, whole words, syliables, individual letters, and fractions of letters form the units for transposition; but it is not difficult to imagine how impractical such a scheme would be for regular communication, and it may be takon for granted that such irrogularity in sizo of textual units will not be oncountered in such communication.
d. The days whon the simple methods of word or letter transposition were sufficient. for militery purposes have long since
$1_{\text {Reference }}$ is here made to so-celled fractionating systams. See Spocial Text No. 166, Advanced Military Cryptography, Sect. XI.
passed by, and it is hardly to be expected that cryptograms of such ineffectual inature will be encountered in the military communications of even the sma?ler armies of today. However, in time of emergency, when a counter-espionage censorship is exercised over internal communications, it is possible that isolated instances of simple transposition may be encountered. The solution of such cases should present no difficulties, unless numerous code names and nulls are also usod in the cryptograms. Mere oxperimentation with the cryptograms, trying varicus sizes of rectangles, will usually disclose the secret text. If code names are usod and the context gives no clue to the identity of the persons or places applicable, it may be necessary to wait until additional messages become available, or, lacking such a possibility, there is usually sufficient justification, under the exigencios of war, to compol the corrospondents to reveal the moaning of these code namos. much less complex in thair mechanics than are substitution ciphors, the cryptanalyst usually experiences a feeling of distaste and dismay when confronted with unknown ciphors of thas category. There are several reasons for his aislike for them. In tho first place, although transposition ciphers are admittedly loss intricate than substitution ciphers, as a generai rule there are not nearly so many cryptanalytic tools and "tricks" to be used in the solution of the former as there are in the latter, and therefore the montal stanulus and satisfaction which the cryptanclyst usunliy derives and regards as part of the reward for his hard labor in solving a cipber is often
missing in the case of transposition ciphers. In the second place, despite their lack of complexity, the solution of transposition ciphers often involves a tremendous amount of time and labor most of which commonly turns out to be fruitless experimentation. Thirdly, in modern military comunication transposition methods are usually not employed alone but in conjunction with substitution methods -- and then the problems may become difficult indeed, for usually before the substitution can be solved it is necessary to uncover the substitutive text by first removing the transposition. Finally, in working with transposition ciphers a much higher degree of accuracy in mere mechanical operations is renuired than in working with substitution ciphers, becauso the accidental amission or addition of a single letter vrill usually necessitate rewriting entire messages and starting afresh. Thus, this sort of work calls for a constant state of concentratod attention, with its resultang stito of mental tension, which takes its toll in mental wear and toar.
2. Basic mecharism of trensposition ciphers. - a. Besically all transposition ciphers involve at lasst two processes: (1) writing the plain-text units (usually single letters) within a spocific regular or irregular two-dimensional dosign, in such a prearmanged mannor that the said units are distributed regularly or irregularly throughout the various' sells or 'subsections of that design; (2) removing the plain-text units from the design in such a prearrenged manner as to change the original sequence in which they followed one another in the plain text, thus producing cipher toxt. Since tho first process consists of $2 n s a r i b i n g$ the text within the design, it is

REF ID:A56913

technicaliy refarred to as the process of inscription; and sance the second process consists of transcribing the text from the design, it is technically referred to as, that of transcription. Fither or both processes may be repetitive, by prearrangement of course, in which case the antermediate steps may be referred to as processes of rescription, or rescriptive processes.
b. It is hardly necessary at this point to give the student any indications as to how to differentiate a transposition from a substitution cipher. If a review is nocessary, however, he is reforred to Section IV of Military Cryptanalysıs, Part I.
3. Monophase and polyphase transposition. - a. As may be inferred from the forogoing dofinitions, when a transposition system involves but a single process of inscription, followed by a single process of transcription, the systam may be reforred to as monophase transposition, comnonly called singlo transposition. When one or more rescriptive piocesses intervene botween the original inscription and the final transcription the system may be reforred to as polyphase transposition. As a general rule, the solution of the latter type is much more difficult than the former, especially when the transpositions are theoretically correct in principle.
b. Any system which is sulted for monophase transposition is also uøually surted for polyphase transposition, tho processos of inscription, rescription and transcription being accompiished with the samo or with difforent koys.

SECTION V

SPECIAL SOLUTIONS FOR TRANSPOSITION CIPHERS

 pression REFHRRING TO YOUR NTMBERR. 'Here is a cryptogrom assumed to begin with this phrase:CRYPTOGRAM

IMAOD	RMGRN	ERNIN	TUSFS	D R Y EP	BRCFT
O IRNW	TMUIS	OIEGE	D HOPN	CHLFU	ESEPQ
ERIAR	UHIAG	PAUOO	SSSCI	0 NRRE	OVOEY
玉MEVG	TRIA	HTEPB	N BTNE	AEETA	

c. Assuming that previous experience has indicated that the enemy uses keys varying from 10 to 20 letters in length, the arrangement of the letters in the tops of columns under a key length of 10 would be as shown in Fig. 20.

> | 12345678910 |
| :--- |
| RTFTRTINT | OYOURNUMBE R

FIGURI 20.
The lst group of the cryptogram begins with I M. The arrangement shown above gives I U as the top of a column: hence a key length of 10 is not correct. A key length of 11 is then tried.

> | 123456789 | 1717 |
| :--- | :--- | :--- | YOURNUMBER

FIGURE 21.
Here a column is headed by $I M$, so that this is a possible arrangement. If the width of the rectangle is 11 , its outlines are as shown in Fig. 22. There are 5 columns of 11 letters and 6 columns of 10 letters. The

FIGURE 22.
text can now be marked off into sactions of proper lengths and, moreover, guided by the letters which must be at the heads of columns, the text can be inscribed in the rectangle in key order. For example, column 1 must end with the $2 d$ group, RMGRN; column 2 therefore begins with $\mathbb{F} R$. There is only one possibility, viz, the 4 th column. This is a long column, and must therefore have 11 letters, making column 3 begin with R Y. This definitely fixes the position of the number 3 in the key, and so on. The solution is reached after only a very few moments and is as show in Fig. 23.

39624710508
REFERTNGTO YOURNOMBERS EVENWHATDIS
POSITIONHAS BEENMADEOFC RYPTOGRAPHI CEQUIPMENTO FMESSAGECEN TERFOURTHPR OVISIONALBR IGADE

FIGURE 23.
d. The same general principles, modifiod to suit tho circumstances, may be followed in the case involving known or suspected ondings of messages. The probable words are written out according to various assumed key lengths and the superimposed letters falling at the bottoms of columns are sought
in the cryptogram.
21. The case of an omitted column. - a. Sometimes a very careless clerk omits a column in transcribing the text from the enciphering rectangle and fails to chock the number of letters in the final cryptogram. Obviously such a cxyptogrem will be difficult if not impossible to decipher at the other ond, and a repetition is requested and sent. If now the identical plain text is enciphered correctly, two cryptom grams are at hand for comparison. This will disclose the length of one column, which can be assumed to be either a long ons or a short one.

The position, in the correct cryptogram, of the column omitted from the incorrect one will often afford direct clues as to the exact dimensions of the enciphering rectangle. For example, suppose the cryptogram in Par. 20b had first been transmitted as follows:

CRYPTOCRAM

0 D	R	RYEPB	RCFTO	IRNWT	MOISO
IEGED	HOPNC	HLFUE	SEPQ	RIARU	HIAGP
AOOOS	SSCIO	NRREO-	V $0 \mathbf{E} \mathbf{Y}$ F	MIVGT	R I AFH
TEPBN	BTNEA	EET			

b. The column which was omitted is ERNINTUSFSD, and falls between columns 1 and 3. Since the omitted column contains 11 letters and column 1 contains 10 , the dimensions of the rectangle immodiately become known. Thus, uncertainties as to the dimensions of the rectangle are dissolved and a large step in the solution taken. Also, the general positions of column 1 and 2 are now known, since the former is a short one, the latter a long one.
22. The case of an interchanged pair of columns. - a. The keying element in the case of columnar transposition is simply a practical means of controlling the order in which the columns of the enciphering rectangle are transcribed in forming the cipher text. Commonly this numerical key is derived from a literal key. Suppose that a cryptographic clerk makes a mistake in the latter step. For example, suppose that the literal key is ADMIRATION and that as a result of a slight relaxation in attention he assigns the number 5 to the letter N and the number 6 to the letter M. A pair of columns will become interchanged as regards their order of selection in the transcription process, and likely as not a repetition will be requested by the addressee. If a
second version is sent, enciphered by the correct kcy, a comparison of the two versions will disclose the width of the enciphering rectangle and possibly the general position (left or right) of the columns that were interchanged.
b. An example will serve to make the matter clear. Assume the two cryptograms to be as follows:

FIRST VERSION

SECOND VERSION

c. The two cryptograms are supermposed as shown in Fig. 24 and their points of similarity and difforence noted.
lat version.. ODNILNTTHDGSOHAOOQSGTERESINEN ET 2nd Version.. ODNILNTTHDGSOEAOOQSGTERUTUEHRW,

1st, version.. NTEHRWRRIRATPEDETANOOCOOROGTOE 2nd version.. 臽PSINENERIEATPEDETANOOCOOROGIOS

FIGURE 24.
d. The two versions are alike except for a pair of interchanged sequences; the bracketed sequence $P S I N E N E$ in the lst version is matched by the same sequence in the 2 d version, but at a different position in the message; likewise the brackoted sequence N F U E HRWR in the lst vorsion is matched by a similar sequence in the $2 d$ version, but at a different position in the message. The various deductions which can be made from tho situation will now bo set forth.

REF ID:A56913

e. One of these sequences contains 7 letters, the other contains 8. It follows that the columns of the enciphering rectengle are probably 7 and 8 letters in length; hence, with 61 letters, the width of rectangle is 8 . Since there are 23 letters from the beginning of the messages to the first point of their difforence, it follows that there are 2 column of 8 letters and 1 column of 7 letters involved in this section $[(2 \times 8)+(1 \times 7)=2 \overline{3}]$, and that tho error made in encipherment doos not involve columns 1, 2, or 3, which are therefore properly placed in the lst varsion. Since the sequonces which are intorchanged aro consecutive in the text it means that the numbers 4 and 5 were interchanged in the key for the lst version. Since one of these sequencos is of 7 letters, the other of 8 letters, one of the numbers, 4 or 5, applies to a long column, the other, to a short column. Since the 2 d vorsion is presumably the correct version, and sinco in the $2 d$ version the 3 -letter sequence comes first, the koy number 4 applies to a long column, the key number 5 , to a short column in the correct version. With the foregoing deductions in mind, the solution and the reconstiuction of the numerical key becomes a simple matter.
I. The text of the corroct version is written out as seon in Fig. 25a. Seoing a Q in columin 3 and a O in column 4, these two columns are made adjacent by sliding colunn 3 one interval downward, as shown in Fig. 25b. In the latter, column 7 has also been placod to the right of column 5, because it yieids good trigraphs with columns 3-4. Seeing the trigraph T R 0 near the bottom of columns 3-4-5 and the letters 0 and P in the same row, auggeste the word TROOP . The columns are to be roarcanged to make this word IROOP. Thore are two columns which have

12345678	12345678	34526	34726815
a c	c	0 NETR	ONETROOP
tod do	d 0	OFTHI	OFTHIRDS
OHONPREO	OTANERPO	QUADR	QUADRONI
DDQFSITR	DHOFTISR	SENGA	SENGAGIN
NGSUIRAO	NDQUARIO	GHOST	GHOSTILE
ISGENANG	IGSENANG	TROOP	TROOPONN
LOTEETOI	LSGHOTEI	EWCHE	EWCHESTE
NHERNPOO	NOTROPNO	RRO D	RROAD
TARWEECS	THEWCEES		
TO R DO	T RROD		
日	b	$\underline{\text { c }}$	d

an 0 in the proper row, columns 2 and 8. The trial of combination 3-4-5-8-6, while producing TROOP in the proper row, gives bad pentagraphs in the other rows; but the combination 3-4-5-2-6 shows excellent pentagraphs, as will be seen in Fig. 25c. The words SQUADRON and HOSTIIT are clearly evident; the completion of the rectengle is now a very simple matter. The result is shown in Fig. 25d. The recovery of the numerical key now will enable other cryptograms to be read directly.
23. Massages with similar beginnings. - a. In military correspondence it is often the casc that somowhat similar insuructions or information must be conveyed by a superior commander to several subordinato commanders simultanoously. Such a situation frequently results in the circumstance that two or moro cryptograms addressed to different stations will begin with exactly the same words. When simple columar transposition is the systam used for encipherment, then it will result, in such cases as the forsgoing, that the first two or more rows of the transposition rectangle will be identical in the messages which begin alike. Therefore, the cryptograms will show identical sequences of two or more letters, distributed throughout the texts and
by studying these identities the cryptanelyst is able at once not only to ascertain the width of the rectangle but also to divide up the cipher text into sections corresponding.with the exact columns of the rectangle, thus eliminating the only real difficulty in solution, viz, the determination of which are the long colums, which the short. . An example will demonstrate the short cut to solution which such a situation provides.
b. Here are two cryptograms which are assuned to have been intercepted within a few minutes of each other, the messages being addressed to two battalion commanders by the regimental commander.

CRYPTOCRRAM 1
BNTSEARKCLCETTNEITERROTAELTNNONNENO OTOKMSZTGNYITDKIANARFTHSNPGNPARWOLA OFGTPCTOTDNINOEWXERFASIOSTIDRRRMMAO ARPATOUTIOBIEOAGAAPNEIK

CNXPTOGRAMI 2

c. The cryptanalyst now carefully compares the two texts, looking for identical sequences of letters between the cryptograms. For example, No. 1 begins with $B \mathrm{~N} T \mathrm{~S} \mathrm{E}$ and so does No. 2; after an interval of 4 letters in No. 1 and 5 letters in No. 2 he notes the identical sequences LC IT; aftor an intorval of 5 lettors in No. 1 and 5 letters in No. 2 he notes the identical sequences E R $\mathbb{F} 0$, and so on. The identities are underlined or marked in sone distanctive mannor throughout tho texts, as shown in Fig. 26.

REF ID:A56913

CRYPTOGRAM 1

 ARPAT[OTITO BIEO[AGAAP]NEIK

CRYPTOGRAM 2

 FIGURE 26.
d. Now it is obvious that these identities exist because the two messages begin alike, and by taking advantage of the identical portions in the cryptograms it will be possible to transcribe the texts of the latter into transposition rectangles wnich shall not only have the identical portions in homologous positions, but also shail show which are long columns, which are short. All that is necessary is to begin transcribing the texts on cross-section paper, in colums, arranging matters so that the identical sequences will fall at the tops of the columns. Thus, the lst column of No. 1 will contann the letters BNTSEARKC and the lst column of No. 2 will contain the letters BNTSEINDOT; the $2 d$ column of No. 1 will contain the lotters LCTTTNBITand the 2 A column of No. 2 will contain the letters LCETSAFPI, and so on. It appoars that the identical portion ambraces the first four rows of the roctangle and runs over a number of
letters on the 5th row. This is because the identical sequences consist of 4 and 5 letters. Fig. 27 genows the identities between the lst 5 columns of the two transposition rectangles. Only once in the case

12

EN T	E
NCRNO	NCRNO
TEROK	TERO
STONM	STONM
ETTNS	ESMS F
ANAEZ	IAOTE
R B ENT	NFII
K I O G	D P I K
CTTON	0 L 0 UP
	T \mathbf{E}

FIGURI 27a.
of this particular example does any uncertainty arise as to exactly where an identical sequence begins or ends, and that is in connection with the 7th pair of identities, involving the series of letters AETTFSNPGNP in No. 1 , and AETESTONTN in No. 2. These sequences contain 6 identical letters, but oven here the uncertainty is of only a moment's duration: the injtial letter A does not belong to the identical portions at the top of the transposition rectangle because the Als are needed to complate columns 6 in both rectangles. (If the A were placed at the head of column 7 in No. 1, then column. 6 would lack a letter at the bottom.) Cases of "accidental identities" of courso complicate the process of cutting up the text Into the respective columns, but they only serve to add a small degree of interest to- what would otherwase be a purely cut and dried process. The final results of the transcription into columns are shown in Fig. 27 .

- E. It is clear from a comparison of these two transposition rectangles, and a consideration of the fact that the long colums must of necessity go to the left side, that the numbers 7 and 10 occupy the first two positions in the key, and that the numbers 2, 4, 11, and 13 occupy the last four positions in the key. By segregating and anagraming

1

$1234567892111213 y_{4} 1234567891011013 y_{4}$	
NCRNOIFRFOOMUG	NCRNOJFRFOOHUG
TEROKTTWCESATA	TEROKTTWCESATA
STONMDFOTWTOIA	STONMDTOTWTOIA
ETTNSKSIOXIAOP	ESMSFVSATXTOEA
ANAEZINATEDRBN	\bar{I} AOTESTRLPTSEB
RBENTAPODRRPIE	NFIIYIOOTVFCII
KIIOGNGFNFRAEI	DPSIKNNEATOAST
CTTONANGIARTOK	OLOUPTTr゙ICNOR
P S	T E CANKAT R T
FIGURE	

1.			2.		
710		241-13-4	70	.	241-12-4
EN		LION	EN		I ION
F 0	COUN	Fo	COUN
T E	ESTO	T E	ESTO
FW		T TIN	F W	.0.0.0.	T T IN
5 X	-•...0.0	TION	5 X		STES
N E		NDBE	T P		ATET
PR		BRIN	0 V		FFLI
G F		IREO	NT		POSI
N A		TROO	T I		L C O J
P S			N T		

FIGURE 27․
columns 7 and 10 as one group, and columns 2, 4, 11 , and 13 as another group, the exact positions occupied by these 6 columins are easily ascertained, as shown in Fig. 27c.
f. The remaining columns $1,3,5,6,8,9,10,12$, and 14 fomn a third group of columns to be anagrammed, but this is ratier easy now that the columans on either side are fixed. The completed rectangles are shown in Fig. 27d.
24. Messages with similar endings. - a. What has deen said at the beginning at the preceding paragraph with respect to the nature of military correspondence and the presence of identical phraseology in

$\frac{70-342-641-4-9-5-8-2 n-13-4}{\text { E }}$ FORMINGFORCOUN TERATTACKWESTO FWOODSATMOTTIN SXMOVEATHASTES TPOSSIBLERATET OVICINITYOFFII NTSANDTAKEPOSI TIONTOREPELCOU NTERATTACK

FIGURE 27a.
the messages sent by a ulperior commander to his subordinates also operates to produce messages in which the ondings are identical. It has been noted that when two messages with similar beginnings are available for comparison, the reconstruction of the transposition rectangles and the recovery of the transposition key is an easy matter, It will now be shown that solution is an even easier matter when two泡sages having identical endings are available for study. b. Given the following two cryptograms:

No. 1.

No. 2.
TLTSXOPNREMEFDSKYENRURERBTSREHTIANT IVYMR VESIREENEI NOLTMNNEDETROOPUNARA CIAAINSCWNA

The cryptanalyst now carofully compares the two texts, searching for identical sequences of letters, but in this case instead of trying to locate identities in what may be termed a parallel progrossion (as in the preceding caso) he searches for identical sequences of two or more letters
appearing in both messages. For example, in the present case, he notes the sequence $T \mathrm{R} O$ forming the final trigraph of the 8th group of No. 1 and finds a similar sequence forming the initial trigranh of the l3th group of No. 2. Going through both cryptograms in this way, all the identities are marked off in some fashion, by colored crayon or by brackets, as shown below. In this search for identities the cryptanalyst bears in mind that when all have been found they should be distributed at quite regular intervals throughout the text. For example, noto in the following that the identities in No. 1 fall at intervals of 6 letters, with one exception; in No, 2 they fall at intervals of 4 letters, with one exception. The intorvals between identitios serve as a guide in finding them, After thoy have all been located, the identities in the cryptograms are numbered serially.

No. 1

No. 2

 $\operatorname{CIA}\left[\begin{array}{l}12 \\ \text { I }] ~ N S C W\left[\mathbb{N}^{13} A\right]\end{array}\right.$
c. The numbers above the identities may now be used to draw up a table of equivalencies of identities. For instance, 1dentity 1 in cryptogram 1 matches 1 dontity 7 in cryptogram 2; 1dentity 2 in cryptogram 1 matches ldentity 6 in cryptogram 2, and so on. Thus:

Cryptogram 1 ... 1-2-3-4--5-6-7-7-9-10-11-12-13
Gryptogram 2 ... 7-6-9-2-10-5-11-3-4-12-13--1--8
d. Now cryptogram 1 has 105 letters, since the key concists of 13 numbers (indicated by the 13 identities), tho rectangle for cryptogram 1 contains 12 columns of 8 letters and 1 colunn of 9 letters. Cryptogram 2 has $\delta 1$ lutters, and its ractangle contains 10 columns of 6 latters and 3 columins of 7 lettors. The roctangle of cryptogram 1 has but 1 long column, whereas that of cryptogrem 2 las 3 long columns. Rolative to the position the last letter in each rectancle occupies in the last row of tho restanglo, it $1 \bar{s}$ obvious that the last letter of the rectanglo for cryptogram 2 is 2 lettors in advance of the last letter of tho roctanglo for cryptogran 1. Using this difficronce, viz, 2, a cyclic sequonce is gonerated from the sorive of equivaloncies given above. Thus, the equivalont of indentity 1 of cryptogram 1 is identity 7 of cryptogram 2, and the numbar 7 is placed two intervals to tho raght of the numbor 1 ; tho equivalont of idontity 7 of cryptogram 1 is 1dentaty 11 of cryptogram 2, and the number 11 is placed two intervals to the right of number 7, and so on until the followng sequence is obtained:

$$
\begin{aligned}
& 1-2-3-4-5-6-7-8-9-10-11-12-13 \\
& 1-7-11-13-8-9-9
\end{aligned}
$$

Q. The equavalont of 1 dontaty 9 of cryptogram 1 1s Identity 4 of cryptogram 2, and the numbor 4 is plinesd betwoen the numbors 1 and 7 in
this sequence, for the sequence may be regarled as partaking of the nature of a cycle or a contınuous series. From this point on, the process is the same as before, and finally the followng is obtained:

$$
\begin{aligned}
& 1--2--3--4---5-6---7-8--9--10--11--12--13 \\
& 1--4--7-2--11-6--13--5--8--10--3-12--9
\end{aligned}
$$

f. After little oxporiment it bocomes obvious that column 8 belongs on the extreme loft and that the key $1 s$ 8-10-3-12-9-1-4-7-2-ll-6-13-5. The completely deciphured messages are shown in Fig. 28.

$\frac{8-10-3-22-9-1-4-7-2-11-6-13-5}{\text { IN ANTM P INT }}$
REDCOLUMITPA
EDSILV $\mathrm{E}_{\text {R R UNCR }}$
NTYAMXREMAINH
EREINOBSER
0

FIGURE 28.
g. The possibility of the rapid solution of columnar transposition ciphers by moans of the method of similar buginnings and endings, constitutes one of tho moct sarious drawbecks to the use of trinsposition caphers in malitary cryptography, bocause it is alnost impossible to avold such cases where many messages must bo sont in the same key each day.
STOP Jump to 114
25. Solution of a single message containing a long repetition. a. Sometimes a lengthy hhraso or a surıes of numbors (spelled out in lettors) is repocted within a mossoge and if tho message is oncipherod by a transposition rectanglo of such narrow wath (in comparison with the length of the repotition) that the repeated portion forms identical

SOLUTION OF THE ADFGVX SYSTHEM

Paragraph

37. Introductory remarks. - à. One of the most interesting and practical of the many methods in which substitution and transposition are combined within a single system is that known in the literature as the ADFGVX cipher. ${ }^{1}$ In this system a 36-character bipartité substitution checkerboard is employed, in the cells of which the 26 letters of the alphabet and the 10 digits are distributed in mixed order, often according to some keyword. The row and column indicators (coordinates) are the latters ADFGVX, and taken in pairs the latter are used as substitutes for the letters of the plain text. These substitutive pairs are then inscribed within a rectangle and a columnar transposition takes place, according to a numerical key. The cipher text consists then merely of the 6 letters A, D, F, G, V, and X.
b. The ADFGVX cipher system was inaugurated on the Western Front by the German Army on March 1, 1918, for communication between higher headquarters, principally between headquarters of divisions and corps. When first instituted on March 1, 1918, the checkerboard consisted of 25 cells, for a 25 -letter German alphabet (J was omitted), and the 5
$1_{\text {Special Text No. }}$ 166, Advanced Military Cryptography, Sec. XI.
letters A, D, F, G, and X used as coordinates. On June 1 the letter V was added, the checkerboard having been enlarged to 36 cells, to take care of a 26 -letter alphabet plus the 10 digits. Transposition keys ranged from 15 to 22 numbers (inclusive) and both the checkerboard and the transposition key were changed daily. The munber of messages in this system varied from 25 a day upon the inception of the system to as many as 150 per day, during the last days of May, 1918. The first solution was made on April 6 by the French. The cipher continued in use rathor extenslvely until late in June but from that time until the Armistice the volume of messages diminished very considerably. Although only 10 keys, covering a period of as many days were ever solved, the proportion of solved messages in the whole intercepted traffic was about 50%. This was true because of the fact that the keys solved were those for days on which the greatest number of messages was intercepted. The same systam was amployed on the southeastern front from July, 1918, to the end of the war. Keys werc in effect at first for a period of 2 days and beginning on Soptember 1, for a period of 3 days. In all 17 keys, covering a total of 44 days, were solved.
c. At the time that the Allied cryptanalytic offices were working with cryptograms in this system only three mothods were known for their solution and all three of them are classifiable under the heading of special solutions, because certain conditions had to obtain before they could be applied. No general solution had beon developed until after hostilities had ceased. Because they are interesting and useful some attention will be dovoted to both the general and the special solutions. Since the special solutions are easy to understond and serve as a good

REE ID:A56913

introduction to the general solution, they will be taken up first.
38. Special solution by means of identical endings. - a. In Par. 24 it was demonstrated how the solution of keyed columnar transposition ciphers can be facilitated and simplified by the comparison of two cryptograms which are in the same key and the plain-text endings of which are identical. It was noted in that case that a stuaf of the irregularly distributed cipher-text identities between the two cryptograms permits of not only cutting up the text into sections that correspond with the long and the short colums of the transposition rectangle but also of establishing the transposition key in a direct manner almost entirely mathematical in nature. When this has been accomplished the plain texts of these two messages are at once disclosed, and all other messages in the same key may be read by means of the key so reconstructed.
b. The same method of solution is applicable to the similar situation, if it can be found, in the case of the ADFGVX system, except that one more step intervenes betwoen the reconstruction of the transposition rectangle and the appearance of the plain text in the rectangle: a monoslphabetic substitution must be solved, since the text in the rows of the rectangle does not consist of plain-text letters but of pairs of components representing these letters as enciphered by means of a bipartite substitution alphabet. Moreover, this latter step is comparatively simple when there is a sufficient amount of text in the two rectangles; if not, additional material for use in solving the monoalphabet can be obtained from other cryptograms, in the same key, if they are availeble, since the transposition key, having already beon reconstructed fram the two cryptograms with identical endings, will
permit of inscribing all other cryptograms in the same key within their proper rectangles.
c. A demonstration of the application of the principles involved in cuch a solution will be useful. The following cryptograms have been intercepted:

$$
\text { No. } 1
$$

	vddag	DADVF	ADADA	FXGFV	x FAXA
XVAVF	AVXAD	GFFXF	FGAGF	DGDGD	DGAF
AADDD	X D	GAADX	ADFVF	FDFX	G F
AFAFX	FFXFX	FVDGX	AFFGX	AAAVA	V A F
DDFAG	VFADV	FAVVX	GVAAA	FDF	$\mathrm{X} \mathbf{F}$

No. 2.

FDFPFP GAXGD	FVFAD VXGFX		$\begin{aligned} & G A F D F \\ & A A A A D \end{aligned}$	$\begin{aligned} & D A G A D \\ & G X F F D \end{aligned}$	$\begin{aligned} & \text { FDFAF } \\ & \nabla F A A G \end{aligned}$
VGVFF	FDAFF	FXDAF	XGAFD	VFGXV	D
DAAAX	AAFFA	FVFXF	FAXXA	XDGXA	V DAVF
DFAVX	VADXF	AXFEX	XAAVX	XADXA	A A
AGDXX	FDFAX	FDGDF	FXDGX	T	
DXDAF	A GX	FGA			

a. 'The delimitation and marking of identities between these two cryptograms is a procedure similar to that explained in Par. 24b, except that a little more study may be necessary in this case because occasionally there may be considerable uncertainty as to exactly where an identity begins or'ends. The reason for this is not difficult to understand. Whereas in Par. 24b the process involves "unfractionated" letters and there aro about 18 or 20 different letters to deal with, so that an "accidental identity" is a rather rare occurrence, in the presont problam tho process involves fractions of letters (the components of the bipartite cipher equivalente), and therc are only 6 difforent characters to deal with, so that such "accidental identities"

REF ID:A56913

are quite frequent. Now the cryptanalyst is not able at first to distinguish between these accidental identities and actual identities and this is what makes the process somewhat difficult. What is meant whll become perfectly clear presently.
e. Taking the two illustrative cryptograms, the first step is to ascertain what identities can be found between them, and then mark off these identities. For oxample, it is obvious that if the messages end alike the lest several lettors in No. 1 should be found somewhere in No. 2, and likewase the last several letters in No. 2 should be found somowhore in No. 1. The number of letters in identical soquences will depend upon the length of the identical toxt and the width of the transposition rectengle. Searching through No. 2 for a sequence such as AGDX, or GDX, or at least DX, the tetragraph AGDX is $\mathrm{I}^{\prime} o u n d$ as latters 151-54. The last column of No. 2 ends with FGAV; searching through No. 1 for a sequence FGAV, or GAV, or at least AV, the tetragraph FGAV is found as letters 87-90. These identities aro underlined or marked off in some fashion, and search is made for other identitios. It would be a great help if'the width of the transposition rectanglé were known, for then it would be possible to cut up the text into lengths approximately corresponding to colum lengths, and this would then restrict the search for identical sequences to those sections which corrospond to the bottoms of the columns. Suppose the key to contain 20 numbers. Then the roctanglo for No. 1 , containing 152 lotters, would consist of 12 long columns of 8 letters and 8 short ones of 7 letters; that for No. 2, containing 194 letters, would consist of 14 long columns of 10 lotters and 6 short ones of 9 letters. If that
were correct then in No. 1 the end of the first column would be either XVDD, or XVD. Searching through No. 2 for either of these a sequence XVDD is found as letters 84-7. Column 1 is probably a long column in No. 1. The word probably is used because the identity may extend only over the letters XVD, and the next D may be an accidental similarity, since the chances that D will appear by pure accident are 1 in 6 , which is not at all mprobable. It must also be pointed out that a certain number of telegraphic errors may be expected, and since there are only 6 different letters the chances that an F, for oxample, will be received or recorded as a D are fairly good. Column 1 of No. 2 ends either with VFAD or VFA. Searching through No. 1, a sequence VFAD is found as letters 14-17; a sequence VFA is found as letters 34-6; a sequence VFFD is found as letters 79-82; a sequence VFAD is also found as letters 126-130; a sequence VFA is found as letters 131-3. Here are soveral possibilitios; which is the one to choose? Two of these possibilities coincide exactly with the full sequence being sought, VFAD. One of them is at 14-17, but this is rather unlikely to be the correct one. For if an hypothesis of a key of 20 column is assumed, as has here been done, then column 2 must contain either 8 or 7 letters and to assume VFAD in positions $1 / 4-17$ would make column 2 a column of 9 letters, which is inconsistent with that hypothesis. The other VFAD sequence, at 126-30, remains a candidate, since at this stage it is not possible to tell just where the ends of the columns are, and there is therefore nothing to indicate that this possibility may be ruled out. Another section of the text of one or the other cryptogram is selected, with a view to establishing additional identities. To go through the
whole process here would consume too much space and time. Moreover, it is not necessary, for the only purpose in carrying the demonstration this far is to indicate to the student the general procedure and to show him some of the difficulties he will encounter in the identification of the similar portions when the text is composed of only a very limited number of different letters; In this case, after more or less tedious experimentation, the hypothesis of a key of 20 columns is established as correct when two sets of 20 identities are uncoverad and the identities are found to be as shown in Fig. 47.
f. A table of equivalencies is then drawn up:

 Since the rectangle for No. 2 has 2 more letters in the last row than the rectangle for No. 1, two chains of equivelents at 2 intervals are constructed. Thus:

1--2--3--4--5-6--7--8--9-10-11-12-13-14--15-16-17-18--19-20								
1.9	19	3	8	2		11		17
10	15	5	13	14	12	20	16	18

These chains must now be united into a single chain by proper interlocking. Since cryptogram No. 1 has 12 long columns, and since the identities of these 12 coliumns are now known (1, 3, 5, 7, 9, 12, 13, $14,16,17,19,20)$, the interlocking of the two chains and hence the transposition key must" be this:

```
'1-2--3--4-5--6-7--8--9-10-11-12-13-14-15-16-17-18-19-20
7-5-17-13-1-14-9-12-19-20--3-16--8-18--2--4--6-10-11-15
```

g. The two cxyptograms may now be transcribed into their proper transposition rectangles, as shown in Fig. 48.

REF ID:A56913

No. 1.

 $\frac{D ~ X ~}{20}$

No. 2.

 $\frac{D_{X A D}}{185}$ AGXXA $\frac{190}{20}$

75913149219203168182460715 FXDAXFAFVXATGVAFAVAF GVFPVXAXAXDADFGVDGDF
AAAAAFDFAFAVDADXGGFG
GVGFAVDGAADAGVAFFAVX
FFVXXDDFFAAFAVDAFAFA DAFFVGXGDGFAFXVXXDFA GVAFDXDAFDXGDGFAFXDA DXDXDAAVAXGD

No. 1.
 AXPDDAFAFADAFFVGDAFA GVDAFDDXDGAAFXFAGDFA VXFVFXVXDXGVFDVXXDAV GDAFFFFAVXAVXGDGFAFX VXXDFAGXDADGDXGDFAVX FVFFVXXDDFFAAFAVDAFA FADAFFVGXGDGFAFXVXXD FAGVAFDXDAFDXGDGFAFX DADXDXDAAVAXGD
18.

FXDAXfAFVXAVGVAFAVAF
AFXVFVATFFFAAFDFAFAX
$\begin{array}{lllllllllll}\mathrm{D} & \mathrm{C} & \mathbf{O} & \mathrm{M} & \mathrm{M} & \mathrm{A} & \mathrm{N} & \mathrm{D} & \mathrm{I} & \mathrm{N}\end{array}$ GVFFVXAXAXDADFGVDGDF
$\begin{array}{llllllllll}H & Y & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{C} & \mathrm{K} & \mathrm{A} & \mathrm{T}\end{array}$ AXFDDAFAFADATFVGDAFA
$\begin{array}{llllllllll}D & A & Y & L & I & G & H & T & S & T\end{array}$ GVDAFDDXDGAAFXFAGDFA
$\begin{array}{llllllllll}0 & P & H & O & L & D & Y & O & \mathrm{O} & \text {. }\end{array}$ VXFVFXVXDXGVFDVXXDAV $\begin{array}{lllllllllll}\mathbf{S} & \mathbf{H} & \mathbf{C} & \mathbf{T} & \mathbf{O} & \boldsymbol{R} & \boldsymbol{W} & \mathrm{I} & \mathbf{T} & \mathrm{H}\end{array}$ GDAFFTFAVXAVXGDGFAFX $\begin{array}{llllllllll}0 & U & T & F & A & I & L & S & T & 0\end{array}$ $\nabla \times \dot{X} D A G X D A D G D X G D F A X X$ $\begin{array}{llllllllll}\mathbf{P} & \mathrm{C} & \mathbf{O} & \boldsymbol{O} & \mathrm{N} & \boldsymbol{T} & \mathbf{E} & \mathbf{R} & \mathbf{A} & \mathrm{T}\end{array}$ FVFFVXXDDFFAAFADDAFA
$\begin{array}{llllllllll}T & A & C & K & W & I & T & H & 0 & U\end{array}$ FADAFFVGXGDGFAFXVXXD
 FAGVAFDXDAFDXGDGFAFX

A L L A R \quad I $\quad \mathrm{S}$ DADXDXDAAVAXGD

No. 1.
h. A frequency distribution is now made of all the bipartite pairs, so as to solve the enciphering checkerboard. There is no necessity for going through this part of the solution, for it falls along quite normal lines of monoalphabetic substitution. The checkerboard is found to be as foliows: ${ }^{2}$

i. The two plain-text rectangles are shown in Fig. 49.
2. Speculating upon the disposition of the letters within the enciphoring checkerboard, it soon becomes evidont that the key-phrase upon which it is based is GIMRMAN MIIITARIT CIPTIERS. The digits arg insertod irmediately after the letters A, B, C, \ldots, as they occur in the mixod sequence, so that

FICURE 50.

The transposition key was ovadently derived
from tho first 20 letters of the mixed soquence:
GERMANTITYCPHSBDFJKO 7-5-17-13-1-14-9-12-19-20-3-16-8-18-2-4-6-10-11-15

Tho date (20th) indicatos that the transposition koy xill have 20 numbers in it.
39. Special solution by moans of idontical buannings. - a. In Par. 23 was demonstrated the nctiod of solution based upon finding two cryptograms wheclh are in tho sume key and the plain toxts of winch bogin

[^0]
REF ID:A56913

with the same words. The application of this mothod to the correspond--ing situation in the case of the ADFGVX systam should by this time be obvious. The finding of identical sequences is somewhat easier in this case than in the case of identical endings because the identities can be found in parallel progression from the beginning to the end of the two cryptogroms being compared. Moreover, the discovery of two cryptograms with similar beginnings is easier than that of two with similar endings because in the former case the very first groups in the two cryptograms contain identitios, whereas in the latter case the identities are hidden and scattered throughout the texts of the two cryptograna On the other hand, the complete solution of a case of identical endings is very much more simple than that involving identical beginnings because in the former case the establishment of the identities carries with it almost automatically the completo reconstruction of the transposition key, whereas in the latter this is far from true and additional cryptogroms may be essential in order to accomplish this sine qua non for the solution.
b. The following represent 8 cryptograms of the same date, assumed to have been enciphered by the samo key. The cryptograms have been No. 上.

VDDFAXFAAX DXGGFFVFXFGXDXGDGAGF AGDADVGGDAAADXXDXAFFAADAFDFFDA

No. 2.
GXDDADDGDFVGXAXXXXGAAAADEADX AVDXFXAD

REF ID:A56913

No. 3.

AFDAD	G	F		A F	
	D X	D G	G G	A	AVGD
A	XFAAG	VAAGA	F D	DXFDA	
,	DADAV	DADDD	GAD	AAAF	
D	DGDDF	AFAGV	AFGXG	$\nabla \mathrm{D}$ D X	
G	VGDFG	AVADA	XDAFA	AFDGF	
G	AFDGX	FAFX	XgGAG	AAFFA	A F
X	DGGFG	DAAAF	DADAD	X	

No. $4 \cdot$
AFGFXAGXAGXDDAFAAXAVGDDDDFAFGV DGDXAFDXAX GFGDDVADXAXGFAXFDADD $G D$

No. 5.
XAAAD DGAAG DDDXFFAVGAXDGGDFFAVA DAAXA GDXDXXXXDGVFAADFFFFVVGFD XPDGG DAXDGADFD

No. 6.

		XVGDD	AVGXA		
		D	D		
			G		
D	DVFFV	VAGVA	XAAGG	X G	
G	DGFDA	AFGAX	FFDVD	D D	
V	GAVAD F	F	F D	D	
DXDVF	FXVAX		X F F	A A	
	AGAVD		DGD	V D D	

No. 7.

No. 8.
DFGFX DFAFTXDXAGADGGGDDFGAXGVDF $\nabla V F D A A A X G D A V D V A D D G V D A F A G$ examined for identical beginnings, and numbers 3 and 6 apparently begin alike, identicál portions being underlined as shown. Now the number of identical sections in the two cryptograms is 15; this indicates that, the width of the trensposition rectangle is 15. Therefore, No. 3 (290 letters) has 5 long colunns of 20 letters and 10 short columns of 19 letters: (15 $\times 20)-10=290]$ No. 6 (302 letters has 2 long columns of 21 letters and, 13 short colums of 20 letters. $[(15 \times 21)-13=302]$. The identical sections in No. 3 and No. 6 having been marked off as shown in Fig. 51, the next step, is to transcribe the texts into their correct column lengths as given by the study of identical sactions, writing them merely in thoir serial order, as shown in Fig. 52. In this transcription no serious difficulty is usually encountered in the division into correct column longths, this process being euided by the identical sequences, the number of letters between the identical sequences, and the maximum and minimum lengths of the columns as calculated from the dimensions of the rectanglo. Whenever difficulties are encountered in this process, they are brought about by accidental identities of letters before and aftor the true or actual identical sequences. In the present case no such difficulties arise except in going from column 12 to column 13. The identical sections for column 13 here consist of the sequence AFFAAF; if these sections are placed at the head of column 13, it leaves column 12 one letter short at the bottom in each diagram. This means that the initial Ars in these identical

No. 3.
$\frac{X D A A A}{1} G X D D X V F V D G A D F X A A A G D F A D G$ AFDAD GVGDVFDEXAGFXAFAFAXDDDDED XAXVA DXFXF DGAGFGGADDAGDGXAVGDG
 GDXDV DADAV DADDDGADAGAAAFGGDXAX FGVXD D GDDF AFAGV AFGXGVDDAX XDVFF FFDXGVGDFGAVADAXDAFAAFDGFVFXXX AAGAGAFDGXAFAFXXGGAGAAFFAAFDGA GAFVX DGGFG DAAAFDADADXVVAK FVADD G, $\frac{\mathrm{FFF} G \mathrm{GAXDFDDFXAAAAA}}{15}$

No. 6.
$\frac{X D A A V}{1} D X D G F X V G D D A V G X A \frac{D X A A D X G G A A}{2}$ GDFDA AAGAX $\frac{D V D F D F F D F D D F X P X P D ~}{3}$ $\frac{F D X A X}{4}$ GAXFFVDVAFGVDVD $\frac{D D A G D G G D A A}{5}$ GGFDD DVFFV VAGVA, XAAGGXGXDD DADXF ADFFG DGFDAAFGAXFFDVD D $\frac{\text { DAGA FADAV }}{8}$ DDDAV GAVAD FGDDF FDGDV DGGXAXAXDA D, XDVFFXVAXGFDAGXFPFFAAXDAFVXG XFDAGAGAVD VAGAF DGDAV VDDDD DFXGV AFFAAFFFDVDFFAF DAGDGGAAAFDXAXA VAXDA GGDXD VF, $\frac{A F T G D A D D D F A G D F A X ~}{15}$ D G

No. 3
123456.78910 71213 145

X D	D ${ }^{\text {P }}$	FID			D	G	X	X ${ }^{\text {a }}$	A ${ }^{\text {a }}$	FiA	A, A
D X	VD	D D		G	F A	D				FA	-
A A	F X	XA			F G	D				A A	A
A A	${ }^{\text {D }}$ A	A G	G	A	A	T		FA	A F	A F	\bar{F}
A	FX	${ }^{1} \mathrm{D}$	गA	D	गA	7			FD		
G	$\times \mathrm{V}$	VG	${ }^{G}$	+	\bigcirc	F	-	,	d	D	
\triangle	A ${ }^{\text {a }}$	AX	X	A	D	A	-	-	-	G	
D F	G D	D A	F	V	\square	G		D	FA	A A	A X
D A	FX	XV	D	D	D		X	X	F		D D
X D	X ${ }^{\text {F }}$	FG	G	VA	A D	A	G	G G	GA	X	X F
VG	A X	XD	D	D	X	F			F ${ }^{\text {F }}$	V	
F A	F F	F G	G $\bar{\square}$		A A	G	G	G	V X	V V	V D
F F	A D	DA	A		V	X	D	DF	F X	X	2 F
V D	FG	GD	X		D F	G			X G	D X	X X
I A	A A	A A			A						
G D	X G	GF			D						
AG		FA			X						
IV		G X			D						DA
G		G F			G D	X	D	DG			D. A
		AA									

No. 6
$123456789 \mathrm{DRDB4} 15$

	D				DA	A	D	Dic	Gix	$X\|A\| A$	A\| F	F\|A	A	
	X			D	DG	GF	FA	A.D	D D	D X G	G F	F A		
	A			A	A V	VT	T G	$G D$	D V	V DA	AA	A A	A	T
	A		A		GA	A G	G A	A F	T F	F A F	F A	A F	F	-
	1 D		+		DX	$\times 1$	${ }^{5}{ }^{\text {P }}$	F	H F	$\mathrm{F}^{\prime} \mathrm{F}^{\text {d }}$	D $\mathrm{F}^{\text {F }}$	F D	$\underline{1}$	G
D					G A	A G	G ${ }^{\text {a }}$	د10	D X	X VG	${ }^{\text {G }}$ F	F ${ }^{\text {X }}$	\times	D
	C			G	GA	A F	F ${ }^{\text {D }}$	DG	GV	VID	DTE	FA	A	D
D	G	,	X	D	DG	$G D$	D A	A D	D A	AXA	AD	D X	X	A
G	A	D	F	A	AG	GA	A V	V V	VX	X G V	VT	V A	A	D
F	A		F	A	A X	X A	A D	D D	D G	G X V	V D	DV	V	D
	G				$G \mathrm{G}$	C F	F D	D G	G F	F F D	DT	T A	A	D
	D			G	G X	X G	G D	DG	GD	D D D	D F	F X	X	F
G	F			F	F D	D 1	IA	A ${ }^{\text {I }}$	XA	A A D	D A	A D	D	A
D	D			D	D D	DX	X V	V/	A G	$G G D$	D F	F A	A	G
	A	X	F	D	D D	D F	F G	GX	2 X	$X A, D$	D D	D G	G	D
	A	F			D A	A F	FA	A A	A F	F G, ${ }^{\text {F }}$	T A	A A	A	F
	A	\bar{X}			V $\bar{\square}$	I D	D V	V]	X F	F/A:X	X G	G D	D	A
	G	X	D		Y ${ }^{\text {¢ }}$	X V	V\|A	A D	D 5	FVIG	G D	D X	X	X
	A		V	F	TII	\#	D D	D Λ	AT	TD V	VIG		D	D
	X	D		V	V 4	1 D	D F	F D	D A	AV	${ }_{4}$	G V	V	C
				V1	VI								F	

FIGURE 52.
sequences represent an accidental identaty; these $A^{\prime} s$ belong at the bottom of column 12 in each diagram, and the true identical sequences are FFAAF, and not AFFAAF. In some cases there may be many more instances of such accidental identities before and after the true identical sequences. Another thing to be noted is that tho identical beginnings in this case run along for at least 4 comploto rows and part of the 5th row in the transposition rectangle. Theroforv, the identical sequences should consist of not less than 4, and not more than 5 lettors; any letters in excoss of 5 in any identical soquence are accidental identities. Therc are seversl such accidental identities in the case under study, $\begin{aligned} & \text { riz, in columns } 5 \text { and } 12 .\end{aligned}$
c. Now comes the attompt to place the columns in proper sequence in the rospective transposition rectanglos. Since No. 6 has only 2 long columns, viz, 5 and 12, it 18 obvious that those tivo columns belong at

REF ID:A56913

the extreme left of the rectangle. Their order may be 5-12 or 12-5; there is no way of telling which is correct just yet. Since No. 3 has 5 long columns, $\operatorname{viz}, 3,4,5,7,12$, and since from No. 6 it has been ascertained that 5 and 12 go to the extreme left, it is obvious that columns 3, 4, and 7 occupy the 3d, 4th, and 5th positions in the rectangles. Their order may be any permutation of the three numbers 3, 4, and 7; their exact order must be ascertained by further study.
d. In this study to fix the exact order of the columns and thus to feconstruct the trensposition key, advantage can be taken of the diverse lengths of other cryptograms that may be available in the same key. In this case there are 6 addi屯ional cryptograms, Nos. 1, 2, 4, 5, 7, and 8, suitable for the purpose. The folloving calculations are made:

Cryptogram No.	Total No. of letters	Lengths of columns	No. of columns Long Short	
1	60	4		
2	38	3 and 2	All same length	
4	62	5	7	
5	74	5 and 4	2	13
7	124	9 and 4	14	1
8	54	4 and 3	4	11
			9	6

Now No. 7 has 4 long columns, and these must consist of four columns from among the five already ascertained as falling at the extreme left, Viz, 3, 4, 5, 7, and 14. Columns 5 and 14 have furthermore been placed in positions 1, 2, leaving colunns 3, 4, and 7 for positions 3, 4, and 5. Which of these three possibilitlos is to be omittad as a long colunn in No. 7 A means of answering this question involves certain considerations of general importance in the cryptanalysis of this typo of system.
e. Consider a transposition rectangle in which the number of
columns is even, and consider specifically the lst pair of columns in such a rectangle. The combinations of bipartite components formed by the juxtaposition of these 2 columns correspond to plain-text letters, and therefore the diatribution of the bipartite digraphs in these columns will be monoalphabetic in character. The same is true with respect to the bipartite components in the $3 d$ and 4 th columns, the 5 th and 6th columns, and so on. Hence, if a long cryptogram of this nature is at hand, and if the two columns which belong at the extreme left can be-ascertained, then a distribution of the bipartite digraphs formed by juxtaposing these columns should not only be monoalphabetic, but also this distribution, if it is at all normal, will afford a basis for matching other columns which will produce similar distributions, for the text as a whole is monoalphabetic. In this way, by proper matching of columans, those witich really go together to form the pairs containing the bipartite equivalents of the plain-text letters can be ascertained. From that point on, the solution of the problem is practically the same as that of solving a columnar transposition cipher with non-fractionatod letters.
f. But now consider a plain-text rectangle in the ADFGVX system, In which the number of columns is odd, and consider specifically the lst pair of columns in the rectangle. Now only the alternate combinations of bipertite components in thése columns form the units of plaintext letters. The same is true of the bipartite components of the 3d and 4th, the 5th and 6th columns, and so on. In all other respects, however, the remarks contained in subparagraph e apply equally to this case where the width of the rectangle is odd.

[^0]: $2_{\text {Since }}$ tho lst crjptogram is addrosised to tho CG 23d Brigade ind the 2d cryptogram mentions that the comendor of that bris? ${ }^{\prime 2}$ has beon orderod to do so and so, the solution of the groups $G G(=2)$ and $F G(=3)$ 1s mado br inference. This gives tho placement of thwse two digits in the ciphor square.

