Mathematics for Deep Learning
Partial Derivatives for Backpropagation

Inputs and Output

Let x denote an input vector. For the moment we’ll leave its dimension and how we index its compo-
nents unspecified.

Similarly, let y denote the output vector corresponding to the input vector, x. Its dimension and how
we index its components will for a moment also remain unspecified, but note that the dimensions of x
and y are generally completely different.

Neural Nets and Layers

We will conceive of a neural net as consisting of L layers. Each layer takes an input vector and produces
an output vector. Then

L) 2)

Y=xO e xt D e x2 e XD e xW e xO0 = x
The parenthesized superscripts denote layer numbers, not exponents. A net with one layer (L = 1) has
two vectors, consisting of one input vector, one output vector, and no vectors in between. An L =4

neural net has five vectors x to x*.

We still haven’t said what the dimensions of the vectors are or how we index their components, but
again note that the dimensions of the various x0 [=o0, .., Larein general unrelated.

Functions to Represent Layer Operations

1+1

The [th function representing the layer [operation transforms x! to x*3_ Sacrificing compactness for

clarity, we’ll write this operation as x(*1) = fl+1<0(x(0),

In a neural net with L layers, there are L (not L + 1) functions f. The one that operates on the input
vector is f1<9(x), and the one producing the output vector is ft<t-D(x(t-D),

2 MathematicsForDeeplLearning.nb

Parameters

The function 1<) also depends on parameters which we will call a’. So for completeness, we need
to capture this too:

X(/+l) = f([+l<—[)(X(/); a([))

When we chain the transformation of the L layers in the neural net together, the complete transforma-
tion is

X(L) - f(L(—L—l)(f(L—l(—L—Z)(f(2<—1)(f(l<—0)(X(0); a(O)); a(l)) ol a(L—Z)); a(L—l))

The ellipses lack clarity, so a better way to see the pattern is to write out a non-trivial case, such as L = 4:
L=4: x9 = fA(FE(fRD(FLO(4O); o), gD); o)

This can be made even clearer by using y = x¥ and x = x

y = X = fACI(FEA(FRD(FAD) x: O); D), @), o)

Actually, let’s write outthe L =3, L =2,and L = 1 cases completely too, since that is barely more than a
bit of copy-and-paste:

L=2: y=x®@ =fCD(fA0(x; a9); alb)
L=1: y=x"=f00(x; a?)

This very special form of composite function is central to the simplicity of the mathematics that follows.

Training

The neural net makes predictions that depend on x = x% by computing all the intermediaries x.

However, during training, we are more keenly interested on the net’s dependence on the parameters,
a, which are tuned on the training data to improve the predictions, than we are on the values of the
x. A measure of goodness (or badness, which is usually called “loss”) is computed, and then deriva-
tives of the loss are taken w.r.t. (with respect to) the parameters, a®. Ta king the derivatives of the loss
function immediately requires us (after one application of the chain rule) to know the derivatives w.r.t.
any of the parameters a' of:

MathematicsForDeeplearning.nb | 3

X(L) = f(L(—L—l)(f(L—l(—L—Z)(f(2<—l)(f(l<—0)(x(0); a(O)); a(l)) ol a(L—Z)); a(L—l))

Remember that each of the vectors x{ has a still-unspecified dimension and each of the vectors a

also has a still-unspecified dimension, and that none of these dimensions in general have anything to
do with any of the others.

A Special Case

L =4, and Entirely One-Dimensional

To get the hang of this, let’s take a very special case. We’ll do L = 4, and we’ll assume that each and

every one of y = x¥ x® x@ xb and x = x9, are one-dimensional, and that a®, a®, a'?, and a® also

happen to each be one-dimensional. We want to know the derivatives w.r.t. any of a®, a®, a®¥), and
©

a of

y = X = fUI)(FED(FRED(FAD)(O); 4O)); g1); g@); o3)

Well, let’s do one:

6y af(44—3)
aa® - aa®

That wasn’t so bad. Let’s do another, but this one will require one application of the chain rule:

ay af(4<—3) af(3(—2)

0ad® T ax® 9a®

Hopefully, you already see the pattern, but if not, write a few more out, and you will get:

6y af(4<—3) af(3<—2) af(2<—1)
0D T ax® ax@ 50

6y af(4«3) af(3«2) af(Zel) 6f(1e0)
ad® T ax® ax@ axD 5a®

Re-Introducing Dimensionality

2

Sticking with L = 4, let’s allow the vectors y = x*, x®, x@_ xD "and x = x, to regain dimensionality, and

similarly, the vectors a®, a®, a?, and a® will also regain dimensionality.

We’ll call the dimensions of the x in the L = 4 case, dy, ds, d3, and d; (in the partial derivatives, you will
see that we don’t need to refer to dy), and the dimensions of the a” in the L = 4 case, ns, n,, ny, and n,.

4 MathematicsForDeeplLearning.nb

The ijth component of x will be x{” and the yjth component of a® will be al. We want to know:

oy, _ ox)

Ig
0 = 50
day, e

Let’s do [= 3 first because it is the easiest:

(4¢3)

(4
oy, _ oxi) _ of!

B = 550 T 350
aaﬂz aaﬂa aaﬂz

We will finally need one result from multi-variable calculus to actually write out the rest. Here is [= 2:

44) 61‘[&4(_3) 6)(/_(334—2)

ay,'4 _ OX, Z
3 axl(f)

iy _
) = ST PR

The summation is over i3 which goes from 1 to d; (or if you prefer, 0 to d; - 1).

The indices iy and p, in this expression are known as free indices, and the index i3, which appears in
exactly two places, is summed over its d3 possible values.

From here on, whenever an index appears in two places, we will assume that it is summed over its
possible values, and not bother with writing the summation symbol. Thus our result is simply

6)/,'4 B afii44—3) afi(33«2)

2) ~ (3) (2)
aaﬂz 6Xf3 aaﬂz

Hopefully, you already see the pattern, but if not, write a few more out, and you will get:

(4¢3) (3¢2) (2¢1)
oy, _ of, 7 ofy " of;

1) = (3) (2) (1)
aaﬂl 6Xi3 6X/'1 aa}ll

a}/i4 _ afl_(44<—3) 05_(33(—2) af,_(22<—1) 6)(,_(11(—0)

2) — 3 2 1 2
W) " o ol ol o)

Keep in mind that there are 2 and 3 suppressed summations in these expressions, respectively.

Notice that for [= 3 we had zero x derivatives and one a derivative. For [= 2, we had one x derivative
and one a derivative. For [= 1, we had two x derivatives and still one a derivative. Finally for [= 0, we
had three x derivatives and still one a derivative.

The L = 4 pattern is that you have 4 - [- 1 suppressed summations, the same number of x derivatives,
and finally one a derivative.

MathematicsForDeeplearning.nb | 5

Tensors (Actually just Matrices)

Tensors can have 0, 1, 2, or more indices and the number of indices is called the rank. When they have 0
indices, we call them scalars. When they have 1 index, we call them vectors. When they have 2 indices,
we call them matrices. When they have r indices with r > 2, we call them tensors of rank r, but these are
conventions. All these are tensors, just with different ranks, and the ones we have immediate use for
are the rank 2 tensors, aka, matrices.

With matrices at our disposal, the expressions that are already getting messy in even the L = 4 case
become matrix multiplications. We will define

(le-l-1)
plel-D) af,

/= — (I-1)
X,

i1

This definition hides the plethora of partial derivatives with respect to the x's. For example,

ayl_A _ afl_(44<—3) 0f/_(33<—2) afi(22<—1)

SO 0 o
oaf) ox? ox? oaf)
becomes
2¢1)
Wi, gBe3) p (3e2) ALY
o) T a3 13,02 5ol
(2} 2

Let’s keep going and also hide the partial derivatives with respect to the a’s by defining

0D = of
gy = oa®
H1

and
2¢1
02D of Y
2,0 = aafll)
1

Putting those two definitions in, we have

(A1) _ 5 4(4€3) 5 4,(362) A(2¢1)
Oi4:ﬂ1 - Mf4:i3 Mis,iz sz:ﬂl
Because people that do matrix multiplications all the time... know that (1) each matrix carries two
indices, (2) that the left-most index in an expression is a free index (in this case, iy), (3) that the right-
most index in an expression is also free (in this case, u,), and (4a) that all the in-between indices are
repeated twice, (4b) are dummy indices (in this case, i3 and i,), and (4c) are summed over all their

6 MathematicsForDeepLearning.nb

allowed values. Knowing this pattern, they ...don’t bother writing any indices at all! With those
conventions, we have simply

O(4<—1) — M(4<—3) M(3<—2) O(2<—1)

Summary of Our Final Result in the General Case

The partial derivatives we need to know when doing gradient descent are given by matrix multiplica-
tions. If there are L layers and we are looking for the derivative of one of the components of y, specifi-
cally, y;,, w.r.t. one of the components of a, specifically, a,‘,’l), then we need to compute the following
matrix product

O(L(—[) — M(L(—L—l) M(L—1<—L—2) M([+2<—[+1) O(I+l<—[)

where
-1 af ™y
iy = 7 0AD)
ox;
Lel) ay;
nY 0]
LsH] 60‘;:,
and
(1+1<—1) — 5'1{;1&[)
1141, M) - 0
1+1>H] aaﬁ?

There are L - [-1 of the M matrices in this product. Having taken all the products, which including the
right-most O, is a total of L - [products, we take the i, yjth entry.

This is insanely tidy for something that could have turned into a mess. The keys to the elegant and
compact result were:

(1) the rather special assumed functional form of our neural net,
y= xO = f(L(—L—l)(f(L—l«—L—Z)(f(2<—1)(f(1<-0)(x(0); a(O)); a(l)) o a(L—2)); a(L—l)),
(2) our hiding of decently-complicated partial derivatives in matrices, and

(3) the conventions for matrix algebra, especially summation over repeated indices (which originates
from Einstein’s 1916 general relativity paper and is known as “the Einstein summation convention”).

MathematicsForDeepLearning.nb | 7

Example — Neural Nets for XOR or Fizz Buzz

| really ought to add a super-simple example to illustrate the general case, such as the neural net that
Grus used to solve XOR or Fizz Buzz in his live coding session, https://youtu.be/o64FV-ez6Gw.

Appendix — Motivating the Ordinary and Multi-Variable
Chain Rule

| could add some motivation for the one multi-variable calculus result that was required for the deriva-
tion, in which case the notes would only require ordinary calculus as a prerequisite. In fact, | could even
motivate the ordinary chain rule, the proof of which requires a good understanding of limits.

For now, | will refer you first to 3BluelBrown (Grant Sanderson) who has a nice explanation of the
ordinary chain rule: https://youtu.be/YG15m2VwSjA. After having digested that, when Sanderson
pictorially explains the same material that | am explaining in this writeup, he motivates the multi-
variable chain rule: https://youtu.be/tleHLnjs5U8.

Itisimportant to be able to fluently go back and forth between precise notation and pictorial under-
standings if you want more than a hand-waving understanding of how backpropagation works, and if
you want to be able to code backpropagation yourself without relying Keras, TensorFlow, or PyTorch.

Let me do a bit of multi-variable chain rule motivation:

Essentially, the multivariable chain rule says that if you go north 100’ and are forced up 200’ in eleva-
tion and then west 100’ and forced up another 300’ in elevation, then you could alternatively have gone
northwest 141.4’ and you would necessarily have been forced up 200’+300°=500’ in elevation. There are
perverse functions for which such perfectly intuitive addition becomes troublesome, but let’s ignore
those.

To be somewhat more general, the multivariable chain rule says that motions along perpendicular
directions (called independent variables) simply add in their final effect. This addition is captured in
sums over however many independent variables there are in the multivariable chain rule. This is why
we had the sum over i; when we wrote

ax® afi(%a) afl_(3<-2)

Ig.

@ — &3) @
ooy, axi, Oay,

Multivariable calculus is awesome, and the high points are Gauss’ Theorem and Stokes’ Theorem, but
you don’t need either theorem for backpropagation. You only need the multi-variable chain rule.

