AK. ODE Assignment 4 $1.7.63$ #4 $*_{\tilde{\tau}}$ $2.9.64#6$ To turn in Tresday, May 17. $3. p. 7248$ population $4. p. 72^{#}/0$ Problem 1 p. 63#4 The Allee effect $EXCCJ$ (a) $P' = r P(\frac{P}{a} - 1)(1 - \frac{P}{K})$ $0 < a < K$ The RHS is a cubic with three roots. It
looks like this:
In tron it, an extremely large
of not for example,
The system always recovers a K
Stable R
Constable 2 $P=0$ $P=a$ $P=k$ (b) The roots of the cubic are $P=0, P=a,$ and $P=K$ Joseph (c) O and K are stable. $P = a$ is unstable. (d) A population with insufficient density of
mates collapses. In other words, once $rac{t}{a^2}$ P <a then $P \rightarrow o$. A population $P > a$ Hart either rises toward K if $a < P < K$ (e) The one thing not already stated in
parts (a) > (d)) is that an extremely large

Problem 2, p.64 #6 $T'=-k(T^{4}-S^{4})$ (a) One root of T^4-5^4 is $T=5$. $S = -4 - 54 = (7-5)$. Some cubic However, it is clear that "some cubic"
has two properties: (1) it has no (real) roots, and (2) for $T>0$ it is
a/ways greater than zero. T^{\prime} k^{s4} upside - down and shifted but
otherwise very
standard and $\begin{array}{c|c|c|c|c} \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & & & \end{array}$ il a single, stable, \leftarrow $\begin{array}{ccc} \circ & & \circ \\ \circ & & \circ \end{array}$

 $Problem Z_{c} (corrb)$

 $Problem 3$ p. 72 #8 Consider $x' = ax^2-1$ Draw the bifurcation diagram $a x^2 - 1 = 0 \implies x = \pm \frac{1}{\sqrt{a}}$ $\begin{pmatrix} a & 0 \\ z & e\gamma \end{pmatrix}$ $\frac{1}{a^{20}}$ to understand the Let's take a=1 $a>0$ case better $x'=x^2-1$ From this we learn that $x = \frac{1}{\sqrt{a}}$ is unstable and $x=-\frac{1}{\sqrt{a}}$ is stable

Problem 4 p. 72 # 10 P_{roblem} 4 p. 72 #10
(a) $\frac{dP}{dx}$ = I-s P + r $\frac{P}{M^n + P^n}$ $\begin{array}{ccc} \n\sqrt{4\gamma} & - & \sqrt{4\gamma} & \sqrt{4\gamma} \\
\ell_{e}t & t = s\gamma & \frac{dP}{d\gamma} & \frac{dP}{d\gamma} \\
\hline\n\end{array}$ $P =$ $rac{dP}{dt}$ = $rac{dP}{dt}$ $p = \frac{P}{M}$
s $M\frac{dp}{dt} = T \frac{dP}{dC} = \frac{dP}{dt} \frac{dF}{dC}$
= $s \frac{dP}{dt}$
sMp + r - p n
+ 1 + p n $\frac{p}{1+p}n$ $\frac{dp}{dt}=a-p+\rho\frac{p}{1+p}n$ $a=\frac{T}{sM}$ $\rho=\frac{r}{sM}$ (b) Take $n=8$ and $p=5$ $\frac{d p}{dt} = a - p + s$ $p = \frac{r}{sM}$
and $p = \frac{r}{sM}$
 $p = \frac{r}{sM}$ $\frac{d}{dt}$, s , and M are positive, $\overline{\mathcal{S}}$ a is positive. We need to find the roots of the RHS for various values of α .

rapid onset of entrophiation Problem 4 (CONT b) (b) $a - p + s$ $f + p$ $a = 0.25$ $7 - 0.25$ $\frac{dP}{dt}$ $P-0.5$ $A = 0.5$
 $A = 0.5$ Explain. $\frac{1}{\sqrt{2}}$ $4 = 0.75$ $\frac{dp}{dt}$ P-0.75 recycling always \rightarrow \rightarrow $\left(\begin{matrix}c\end{matrix}\right)^{5}$ Cstable, large, slowly increasing unstalle, 'Letvee-I stable, small, increasing with 0.5 $0 - 0$ λ \circ $\alpha \rightarrow$

For Problems 2 and 4, let's have Mathematica help us do some nicer graphs than my hand-drawn ones.


```
In[99]:= recycling[p_] := 5 p8  1 + p8
```
