OPE Assignment 10 To turn in Thursday, June 2nd
Logan p. 157 #8, #9, and #10 and any two of
Logan $p.158$ #11, #12, and #13 Problem 1 Logan p. 157#8 Find the Laplace transform of $f(t)=t^2H(t-3)$ $Z[f](s) = \int_{0}^{\infty} t^{2}H(t-s)e^{-st}dt$
= $\int_{3}^{\infty} t^{2}e^{-st}dt = e^{-3s}\int_{0}^{\infty} (t+s)e^{-st}dt$ = e^{-3s} $\left(\int_{0}^{b} t^{2}e^{-st}dt + c\int_{0}^{b} te^{-st}dt + f\int_{0}^{b}e^{-st}dt\right)$
= e^{-3s} $\left(\frac{d^{2}}{ds^{2}} - c\frac{d}{ds} + 9\right)\left(\frac{a}{b}e^{-st}dt\right)$ $=e^{-3s}(\frac{z}{s^3}+\frac{6}{s^2}+\frac{q}{s})$ $\frac{1}{s}$

 $\frac{p_{r6}l_{em}}{I_{nvert}} \frac{2}{\sqrt{5}} \left(\frac{logan p}{\sqrt{5}} \right) = \frac{1}{\sqrt{5}-2}$ Lovert $f(s) = \frac{(s-z)^2}{(s-z)^2}$

Well, $\int_{s}^{\infty} e^{zt} e^{-st} dt = \frac{1}{s-z}$

So if I take $-\frac{d^3}{ds^3}$ of both sides,
 I get $\int_{0}^{\infty} t^3 e^{zt} e^{-st} dt = -(-1)^{1/2/3} (\frac{1}{(s-z)^4})$ Therefore, $f(t) = \frac{1}{6}t^3e^{2t}$ $\frac{P_{ro}Hem3}{I_{n}} \frac{L_{s}ar}{f(s)} = \frac{H_{10}}{s^{2}}$ The $\frac{1}{s^2}$ term is easy. Its interse is t.

What about $\frac{e^{-4s}}{s^2}$ is not only interesting trick

Well $\int_0^\infty 4/t + 1 e^{-st} dt = \int_0^\infty e^{-st} dt = e^{-4s} \frac{1}{s}$

Take $-\frac{1}{s}$ of both sides $\int_0^\infty t \frac{1}{t} \frac{1}{s} e^{-t} dt$
 $\int_{\mathbf{v}}% {\textstyle\int\limits_{\mathbf{v}}\delta g\left({\frac{\partial \mathbf{v}}{\partial u}}% {\textstyle\int\limits_{\mathbf{v}}\delta g\left({\frac{\partial \mathbf{v}}{\partial u}}%$ $L^{-1} \left[\frac{1-e^{-4s}}{e^{2}} \right](t) = t - \left[\frac{1}{2} H(t-4) - \frac{1}{4} H(t-4) \right]$ $=$ $+$ $($ $+$ 4 $)$ H $($ $+$ 4 $)$

Throbbing Logan p. 158¥11 Solve [×]"tkx=(1-HH-F://c.sk/- with 414--0 , ω ith $\chi(s)=0$, $\chi'(s)=0$, and $k=2$. Laplace transform the equation foget $S^{Z}X(s)-SX(0^{T}-X(0^{T}+k^{Z}X(s)))$ $Z\left[\left(1-H\left(t-\frac{4\pi}{k}\right)\right)\cosh t\right]$ $x(s) = \frac{1}{s^{2}+k^{2}} \mathcal{L} \left[(1-H/t \log$ asht $J(s)$ s
cosht
it $\pm(e^{ikt}+e^{-ikt})$ $=\frac{1}{\sqrt{2+k}}\int\frac{1}{2}\left(\frac{1}{s-k}+\frac{1}{s+k}\right)$ $\frac{f}{f}$ is the $\frac{f}{f}$ term was easy because first term was easy because - $\frac{1}{s^{2}+k^{2}}$ $\frac{1}{k}\left(\frac{1}{t-\frac{4\pi}{k}}\cos k\left(\frac{t-\frac{4\pi}{k}}{k}+\frac{4\pi}{k}\right)\right)$ rewritten so 1 can pattern $=\frac{1}{5^{2}+k^{2}}\left[\frac{s}{5^{2}+k^{2}}-\right]$ ese
4πs k s \rightarrow k \rightarrow k $s = \frac{1}{s^2+k^2} \left(\frac{1}{s^2+k^2} - e^{-x^2} \right)$
So now I have to invert that! This is doable , but let's try another approach and then get back to this one.

Problem 4 (CONT'D) [Another approach.) From $t = 0$ to $t = 4\pi/k$
This is a nice ordinary resonance problem. \sim with $\chi(\circ) = 0$ $x'' + k^2x = cos kt$ $k = 2$ The particular solution is A tsinkt ZAK coskt = coskt $A = \frac{1}{z^{k}}$ $\pi_p(t) = \frac{1}{2k}t \sin kt$ This solution already satisfies
 $x_{p}(t) = 0$ and $x_{p}(t) = 0$
so je dont need to add in any
homogeneous solution. $\chi_{p}(\frac{4\pi}{k}) = \frac{1}{2k} \frac{4\pi}{k} \sin k \frac{4\pi}{k} = 0$
and $\chi_{p}(\frac{4\pi}{k}) = \frac{1}{2k} \left(\sin k \frac{4\pi}{k} + \frac{4\pi}{k} k \cos k \frac{4\pi}{k} \right)$
= $\frac{2\pi}{k}$

 $Proofem + (corrb)$ $x_{p}(\frac{4\pi}{k}) = 0$ and $x_{p}(\frac{4\pi}{k}) = \frac{2\pi}{k^{2}}$ become
the initial conditions for the $t > \frac{4\pi}{k}$
homogeneous problem. We can write the $X_{h}^{(t)} = C_{1} \cos k(t - \frac{4\pi}{k}) + C_{2} \sin k(t - \frac{4\pi}{k})$ $x_h\left(\frac{4\pi}{k}\right) = C_1$, $x_h\left(\frac{4\pi}{k}\right) = kC_2$
 $\sum_{k} f_{\text{av}} t \ge 4 \pi/k$, $\gamma(t) = \frac{2\pi}{k^2} \sinh(t - \frac{4\pi}{k}) = \frac{2\pi}{k^2} \sinh t$ In summary, by this approach, $05t\leq \frac{4\pi}{k}$ $x(t) = \frac{1}{2k}t\sin kt$ $\chi(t) = \frac{2\pi}{k^2} \sin kt$ $\frac{4\pi}{k} \leq t$ Or if we use that $k=2$ $x|t| = \frac{1}{4}t\sin 2t$ $0 \leq t \leq 2\pi$ $xH = \frac{\pi}{2}sin 2t$ $2\pi \leq t$

Done with patch Problemts (CONT 'D) method. Back to Laplace We transform method. got as far as : $X(s) = \frac{1}{s^{2}+k^{2}} \left[\frac{s}{s^{2}+k^{2}} - \frac{1}{s^{2}+k^{2}} \right]$ e- 47r</k $\frac{5}{524k^2}$ $Z(s) = \frac{1}{s^2 + k^2} \sqrt{\frac{s}{s^2 + k^2}} - e^{-\frac{1}{k} \pi s/k} \sqrt{\frac{s}{s^2 + k^2}}$
This pattern comes up so often I just want This pattern comes up so otten
to deal with it generally: x^{-1} $\left[G(s)$ $(1-e^{-as}) \right](t) = g(t) - H(t-a)g(t)$ a) $\begin{equation*} \begin{aligned} &\mathcal{L}^{-1} \left[G(s) \left(1 - e^{-as} \right) \right] (t) = g(t) - H(t-a) g(t-a) \end{aligned} \end{equation*}$ that it is $-\frac{1}{2}\frac{d}{ds}\frac{1}{s^2+k^2}$. But $\frac{1}{s^2+k^2}$ is $\frac{1}{z}t\frac{1}{k}$ sinkt. $\frac{1}{k}$ sinkt so $\frac{5}{(5^{2}k^{2})^{2}}$ is $\frac{1}{2}t\frac{1}{k}$ sinkt.
I think we can put all this into a final answer now : τ_{in} τ_{in} μ_{in} μ_{out} μ_{out} τ_{out} $=\frac{1}{2k}$ sinkt + H(t- $\frac{4\pi}{k}$) $\frac{4\pi}{2k}$ sinkt sinkt $-H(t \left(\frac{4\pi}{k}\right)\frac{K}{2k}$ Prt in $k=2$ (the original problem): $\chi(t)=\frac{1}{4}t\sin 2t+H(t-2\pi)\frac{\pi}{2}\sin kt$ $-H/t-2\pi+\sin 2t$ We have perfect agreement with the patch V method.

Plot of Solution to Logan p. 158 #11

```
ln[0.5] Plot[Piecewise[{{t Sin[2 t] / 4, t ≤ 2 Pi}, {Pi Sin[2 t] / 2, t > 2 Pi}}], {t, 0, 6 Pi}]
```


Let's blow up the region at 2π to make sure we have what looks like a smooth join:

 $Probability 5 Logan 7.158$ #12 (a) Solve $x' = x$ $0 \le t \le 1$
 $x' = x - z$ $1 \le t$ with $x(e) = 1$ For $0 \le t \le 1$ that is easy, it is $x/t = e$. The initial condition for the t=1 problem is $\chi(1) = e$.
The problem $\chi' - \chi = -2$ can be
solved with an integrating factor.
 $(e^{-t} \times) = -ze^{-t}$ $e^{-t}x = -2 \int e^{-t}dt = Ze^{-t} + C$ $\int_{\mathcal{O}}$ or

Use $\chi(i) = e^{i\theta}$ to get $e=2+ce$ or $c=\frac{e-2}{e}$

So $\chi(i) = e^{i\theta}$ $0 \leq t \leq i$ $i = i-\frac{e}{e}$ Vse \mathcal{S}_{ρ} $x(t)=2+e^{t}-1e^{t-1}$ /st
= Z+e^t(1-z/e)

Plot of Solution to Logan p. 158 #12 (a)

$ln[+]=$ Plot[Piecewise[{{Exp[t], t ≤ 1}, {2 + Exp[t] (1 - 2/E), t > 1}}], {t, 0, 2}]

 $Problem 5 (contb)$ (b) Solve $x' = x + it$ $x(e) = 1$ $f(t) = -2H(t-1)$ using Laplace transforms $S[X(s)-\chi(s)] = X(s) + F(s)$ $\overline{X}(s) = \frac{F(s)+1}{S-1}$ F(s) = -2 $\int_{0}^{b} H(t-1) e^{-st} dt = -2e^{-5}$

So $X(s) = \frac{-2e^{-5}/s + 1}{s-1}$

The $\frac{1}{s-1}$ term is easy. $X\left[\frac{1}{s-1}\right](t) = e^{t}$

What do we do with $e^{-s}/s / s-1$ 7

Partial fractions $\frac{e^{-s}}{s(s-1)} = \frac{e^{-s}}{s-1} - \frac{e^{-s}}{s}$ $X^{-1}\left[e$ $S(S-1)$
 $S-1$ = $\frac{1}{S-1}$ = $\frac{1}{S}$ = So, to sommarize, our answer is $\chi(t) = e^t - 2H(t-1)\left[e^{t-1}\right]$
Obviously this agrees with the patching method for Oster.
Let's compare, terms for $1 \le t$ (where $H(t-1)=1$):
 $\chi(t) = 2 + e^t - 2e^{-t}$ $\ell \le t$

Problem 6 Logan $p.158$ #13 $9'' + 9 = \begin{cases} 6 & \text{if } 9 \leq t \\ 9 & \text{if } 1 \leq t \leq 1 \end{cases}$ with $q(0)=0$
 $\leq 2Q(s) - 5q(6)^2 - 9(6)^2 + Q(s) = F(s)$ where $F(t) = \frac{1}{5^{2}} - \frac{1}{5^{2}} = \frac{1}{5^{2}} - \frac{1}{5^{2}}$ $S = Q(s) = \frac{1}{1+s^2} \frac{1}{s^2} (1-e^{-q_s})$ partial fractions = $\frac{1}{52} - \frac{1}{1+5^2}$
Q(s) = $(\frac{1}{5^2} - \frac{1}{1+5^2})(1-e^{-9s})$ $q(t)=t-sint -H(t-9)[t-a-sin(t-9)]$

Plot of Solution to Logan p. 158 #13

```
In[2]:= Plot[
     Piecewise[{{t-Sin[t], t ≤ 9}, {t-Sin[t]-(t-9) + Sin[t-9], t > 9}}], {t, 0, 20}]
Out[2]=
                 5 10 15 20
     2
     4
     6
     8
    10<sup>1</sup>
```