ODE Assignment 14 Toturn in Sunday, June 12 1. p.198#1; 2.p.198 #2; 3.p.201#3; 4.p.207#4; 5.p.207#5 Problem 1 Logan p. 198 #1 $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ $B = \begin{pmatrix} -1 & 0 \\ 3 & 7 \end{pmatrix}$ $\chi = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ $A+B = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 3 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 5 & 1 \end{pmatrix}$ $7s-4A = \begin{pmatrix} -1 & 0 \\ 3 & 7 \end{pmatrix} - \begin{pmatrix} 4 & 12 \\ 8 & 16 \end{pmatrix} = \begin{pmatrix} -5 & -12 \\ -5 & -9 \end{pmatrix}$ $AB=(\begin{pmatrix}1&3\\2&4\end{pmatrix})(\begin{pmatrix}-1&0\\3&7\end{pmatrix}=(\begin{pmatrix}8&21\\10&28\end{pmatrix})$ $BA = \begin{pmatrix} -1 & 0 \\ 3 & 7 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} -1 & -3 \\ 17 & 37 \end{pmatrix}$ $det A = -2$ $det B = -7$ $= $avgbt$$
 $det AB = 224-210 = 14 \text{ W} \leftarrow 760°, 180°$
 $det BA = -37+5' = 14 \text{ W} \leftarrow 760°, 180°$ $det BA = -37+51 = 14VV$ $Accl^l$ $A^{2} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 7 & 15 \\ 10 & 22 \end{pmatrix}$ $det A^2 = 154 - 150 = 4$

Problem 2 Logan $7 - 198 + 2$ Let $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ $b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ (a) Solve $A x = b$ $x = A^{-1}b = \begin{pmatrix} -2 & \frac{3}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 \\ -\frac{5}{2} \end{pmatrix}$ Let's check SCREEK
 $Ax = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} -\frac{5}{2} \\ \frac{3}{2} \end{pmatrix} = \begin{pmatrix} -\frac{5}{2} + \frac{9}{2} \\ -5 + 6 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} W$ (b) Same thing by Gramer's rule
 $x_1 = \frac{\det A_2}{\det A_2} = \frac{\det A}{-2} = \frac{3}{2}$
 $x_2 = \frac{\det A_2}{\det A_1} = \frac{\det (21 - 5)}{-2} = \frac{3}{2}$ (c) Not sure what geometric illustration Logan is looking for here, but here is what A and A1 do to the

 $Prob$ (em 3 Logan p. 201 #3 (e) Find the critical point of $x = 2x+3y$
and then fransform the system into
a homogoneous system. "Gitical
point" is jargon for time-invariant
solition F. a $x' - y' = 2$ $sdution. E.g. $x=y'=0$
\n $0=2x+3y^{*}$ in matrix form $\binom{0}{0}=\binom{z}{1}y^{*}/(1/y)$$ $\Rightarrow \begin{pmatrix} x^* \\ y^* \end{pmatrix} = \frac{\begin{pmatrix} 0 & -3 \\ 1 & 2 \end{pmatrix}}{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} \begin{pmatrix} 0 \\ y^* \end{pmatrix} = \begin{pmatrix} -\frac{4}{3} \\ -\frac{13}{3} \end{pmatrix}$

By creating new variables r and w
 $v = x - x^* = x + 14$

we then have
 $w = y - y^* = y - \frac{28}{3}$

we then have
 $\$ $where$ A is s fill $\begin{pmatrix} z & 3 \\ -1 & 0 \end{pmatrix}$ and vector notation this is w ithout the matrix $V' = ZV + 3W$ $w'=-V$

 $Problem 4$ Logan $p.207$ #4 A proof. Assume λ is a non-zero
eigenvalue of a matrix $A.$ In equations,
this means thore is an eigenvector χ
such that $A \chi = \lambda \chi$ the jentify matrix
we know that $A^{-1}A = 1$. To we that,
multiply both sides of the $A^{-1}A\chi = \lambda A^{-1}\chi$ $\underline{\mathcal{I}}\underset{u}{\gamma}$ 50 $\pi = \mathcal{I}A^{-1}\gamma$. Now multiply both sides by 7" (which we
can do because it was assumed that 270. π $x = A^{-1}x$
This says that x is an eigenvector of
 A^{-1} with eigenvalue λ^{-1}

Problem 5 Logan p . $207 - 45$ Another proof. Assume 1 is an eigenvalue of a matrix A . In equations, this means there is an eigenvector x such that here is an
 $A \chi = \lambda \chi$ $M\nu$ Hiply both sides of this equation by A^{n-1} . We have $A^{\prime\prime}$ χ = 1 χ n times $MvHp'y$ both sides of this corrected this control of $A''x = 1x$ in times
But $A''x = A$ in times and when each A acts on × , it and when each π acts on π , it is times, becomes $\lambda \chi$. This has ^A stickler might prefer induction . Also, at some point, both in thisproof and the preceding proof, we are using associativity of matrix multiplication. $E. 9.$ we are using things like A_3 , we are using things
 $A^3\chi = (AAA) \chi = (AAA)AX$.