ODE Assignment 16

Assignment 16 to turn in Thursday, June 16: 1. p. 219 #3 parts (a) and (b) only; 2. Do the diagrams requested in p. 221 #2 (the general solution was found in the previous assignment); 3. Do the diagrams requested in p. 225 #1 (the general solution for this was also found in the previous assignment); 4. p. 239 #13 (this is the only problem with an application that Logan offered in Section 4.5 other than electrical circuits)

Problem 1 Logan p. 219 #3

(a) First, an analytical approach:

We found:
$$\begin{bmatrix} x \\ y \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-3t}$$

We have $x = c_1 e^{-t} + c_2 e^{-3t}$

Take twice the first equation and add it to the second equation (which makes the c_2 terms cancel):

 $x = x = c_1 e^{-t} + c_2 e^{-3t}$

Take twice the first equation and add it to the second equation (which makes the c_2 terms cancel):

 $x = x + y = x + c_2 e^{-t} + c_2 e^{-t} + c_3 e^{-t} = e^{-t}$

So $e^{-3t} = (\frac{x}{2x + y})^3$
 $x = -2c_2(\frac{x}{2c_1})^3$

Let $x = -\frac{x}{2c_1}$
 $x = -\frac{x}{2c_1}$

We have eliminated $x = \frac{x}{2c_1}$

We have eliminated $x = \frac{x}{2c_1}$

The is arbitrary.

And found a relationship between $x = x$ and $x = x$.

ProHem 1 (conto) Sketch $ry = (Zx+y)^3$ for various values of r. $r=0 \left(\frac{(Z \times 4y)^3}{0} \right) = 0 \qquad \chi = -\frac{1}{2}y$ Solutions head toward origin. $r=0 \Rightarrow c_2=0$ $\begin{cases} (0,0), (0,1), (0,-1) \\ (\frac{3}{12}, \frac{1}{3}), (-\frac{3}{12}, -\frac{1}{8}) \\ (-3,8), (3,-8) \end{cases}$ as we walkes are: $\begin{cases} (0,0), (0,1), (0,-1) \\ (\frac{3}{12}, \frac{1}{3}), (-\frac{3}{12}, -\frac{1}{8}) \\ (0,0), (0,2), (0,-2) \end{cases}$ they are: $\begin{cases} (0,0), (0,2), (0,-2) \\ (0,0), (0,2), (0,-2) \\ (\frac{3}{8}, \frac{1}{4}), (-\frac{3}{8}, -\frac{1}{4}) \\ (-\frac{15}{8}, \frac{27}{4}), (\frac{15}{8}, -\frac{27}{4}) \end{cases}$ 9 some values are: Let us next try the nullclines + sample slopes approach. Problem 1 (conto)

The equation was $\begin{bmatrix} \chi' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -3 \end{bmatrix} \begin{pmatrix} \chi \\ y \end{pmatrix}$ The χ -nullcline is where $-\chi + y = 0$.

The y-nullcline is where -3y = 0.

I am going to hand the job over to Mathematica:

Phase Diagram for Logan p. 219 #3(a)

Problem 1 (conTD) (6) We found: $\binom{\chi}{y} = c, \binom{1}{3/5} e^{t} + c_{2} \binom{0}{1} e^{-4t}$. We have $\chi = c, e^t$ y=3c,e+cze-4t $\frac{\chi}{e} = e^{+}$. We can The first equation tells us stick that into the second equation and get $y = \frac{3}{5}x + c_2\left(\frac{x}{c_1}\right)^{-4}$ Let $c_2c_1^4 = r$ $x^4y - \frac{3}{5}x^5 = r$ For sufficiently lorge x, x always overwhelms r, and so for sufficiently large x, $y = \frac{3}{5}x$. So no matter what r is, eventually this approaches straight lines, expanding outward, unless $C_1 = 0$, If c, =0, then x=0 and y contracts inward for large t (because there is only the e-4t term). as one isolated special case, we go inward along the yaxis $y = \frac{2}{5}x$ Je L

Problem I (contb) Time to switch from analytical to qualitative methods. The equation was $\begin{pmatrix} \chi' \\ y' \end{pmatrix} = \begin{pmatrix} 3 - 4 \end{pmatrix} \begin{pmatrix} \chi \\ y \end{pmatrix}$. The x nullcline is $\chi = 0$. The y nullcline is $3\chi - 4y = 0$ or $y = \frac{3}{4}\chi$.

Phase Diagram for Logan p. 219 #3(b)

Problem 2 Diagrams for p. 221 #2 We found: Second, although $w = \frac{\sqrt{3}}{2}$ is not a lot larger than $\frac{1}{2}$, I am going to assume the underlined terms dominate. In that case, for $c_z=0$, we have $\begin{cases} \chi \\ = c \end{cases}$ (wsinut) $e^{\frac{3}{2}t}$ and for $c_z=0$, we have $\begin{cases} \chi \\ = c \end{cases}$ ($\chi = c_z=0$) $\begin{cases} \chi \\ = c_z=0 \end{cases}$ ($\chi = c_z=0$) $\begin{cases} \chi \\ = c_z=0 \end{cases}$ These are ellipses, but exponentially expanding as they go counterclockwise. $C_1 = -1$, $C_2 = 0$ $C_2 = -1$, $C_1 = 0$ $C_2 = -1$, $C_1 = 0$

Problem Z (coNTD) I've gotten about as far as I am going to get with analytical methods and bad approximations. x-nullcline is y=x. y-nulldine is $y=-\frac{i}{2}x$.

Phase Diagram for Logan p. 221 #2

Although Mathematica completely outclasses me, in production of plots, it has been very instructive to take my best shot before resorting to Mathematica.

Problem 3 Diagrams for p. 225 #/ In (a) we found:
In (a) we found:
$\binom{x}{y} = c, \binom{y}{e^{-3t}} + c_2 \binom{y}{i} e^{-3t}$
So one solution with c,=1, cz=0 is that
x decays as e-3t toward the origin while
y is identically zero. e 3t
>1> 7 () () () () () () () () () (
y is identically zero. Le 3t the ci=1 cose 3t the ci=1 cose 3t the ci=1 et=0
case
t in te-3t causes x to grow but the e-3t
upshot is that x is t times 4 and
Another case to plot is $c_{1}=0$, $c_{2}=1$. The tine te-3t causes x to grow but the e-3t is an exponential that always wins out. The upshot is that x is t times y and y is decaying towards the origin.
yēte. V cie
That is some progress using special cases of c, and cz.
cases of c, and cz.

Problem 3 (CONT'D) I could also try an analytical approach. We have $y = C_z e^{-3t}$ regardless of C_1 . So we can solve for t. becomes $\frac{C_1y}{A} = \frac{C_1y}{C_2} - \frac{1}{3}y \ln \frac{y}{C_2}$ Let's take $C_1 = 1$ and $C_2 = 1$ $\chi = y - \frac{1}{3}y \ln y$ As an approximation (which always will eventually get good as time marches on), vassume that x and y are both ting. For example, imagine that $y = e^{-9}$ (or even smaller) which happens when $t \ge 3$. Well then In y is a negative number, and $-\frac{1}{3}y \ln y \quad is \quad 3 \text{ times as big as } y.$ So I am joing to neglect y. $x = -\frac{1}{3}y \ln y$ This is one solution (with c=cz=1) and it is an approximate solution only valid very near the origin.

Problem 3 (conto) I've gotten about as far as I am going to get with special cases and the large-t approximation. x-nullcline is y=3x. y-nulldine is y=0.

Problem 3 (conTD)

In (b) we found: $|1| = c_1(-1)e^{2t} + c_2(-1-t)e^{2t}$ Since this is very similar to (a), we could play the same games, but let us go straight to the graphical method. x-nulldine is y=x. y-nulldine is $y=-\frac{1}{3}x$.

Phase Diagram for Logan p. 225 #1(b)

Problem 4 Logan p. 239 #13. An application! Logan is asking us to put some numbers into his coupled chemical reactors example.

Therefore, applying conservation of mass to each reactor we have

$$VC'_1 = qc_{in} - q_1C_1 + q_2C_2,$$

$$VC'_2 = q_1C_1 - q_2C_2 - qC_2,$$

which is a linear, nonhomogeneous system for C_1 and C_2 . If $c_{\rm in} = 0$, then the system is homogeneous and has the form

$$C_1' = -\frac{q_1}{V}C_1 + \frac{q_2}{V}C_2, \tag{4.41}$$

$$C_2' = \frac{q_1}{V}C_1 - \left(\frac{q_2 + q}{V}\right)C_2. \tag{4.42}$$

The coefficient matrix is

$$A = \left(\begin{array}{cc} -\frac{q_1}{V} & \frac{q_2}{V} \\ \frac{q_1}{V} & -\frac{q_2+q}{V} \end{array} \right).$$

The trace is clearly negative and the determinant (= q_1q/V^2) is positive. Therefore the origin is asymptotically stable. Therefore the concentrations eventually go to zero. \Box

Figure 4.21 Coupled chemical reactors.

The numbers are

$$\frac{q_1}{V} = \frac{16}{4} = 4, \quad \frac{q_2}{V} = \frac{1}{4}$$

Comparison of these various are finished and the second of the second o

Problem 4 (CONTD) To summarize what we know so far, $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix}' = A \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \text{ where } A = \begin{pmatrix} -q_1/v & 22/v \\ 21/v & -(q_2+2)/v \end{pmatrix}$ Logan has not yet used conservation of volume. It has to be that 9+92=91, so we have $A = \begin{pmatrix} -9/V & 9/V \\ 9/V & -9/V \end{pmatrix} = \begin{pmatrix} -4 & 1/4 \\ 4 & -4 \end{pmatrix}$ The nullclines are x-nullcline y = 16x y-nullcline y = xWe are meant to use qualitative methods in this section. I will have Mathematica do a stream plot focused on low concentrations (since we are starting $c_1=0$, $c_2=\frac{3}{40}=0.075$)

Stream Plot for Logan p. 239 #13

Out[30]= StreamPlot[{-4x+y/4, 4x-4y}, {x, -0.1, 0.1}, {y, -0.1, 0.1}]

-0.10

-0.05

-0.10

-0.10

-0.10

-0.10

-0.10

-0.05

-0.00

-0.05

-0.00

-0.05

-0.00

-0.05

-0.10