16

ODE Assignment 16 to turn in Thursday, June 16: 1. p. 219 #3 parts (a) and (b) only; 2. D
ral solution was found in the previous assignment); 3. Do the diagrams reques
also found in the previous assignment); 4. p. 239 #13

Problem's Logan ^p. ²¹⁹ #³ (a) first, an analytical approach : $We found: $\int_{y}^{\pi} |c_{1}|^{2} e^{-t} + c_{2} \int_{-2}^{1} e^{-3t} dt$$ We have $x = c$ e^{-t} + c_2e^{-3t} $y = Zc_2e$ $-3t$ Take twice the first equation and add it to the second equation (which makes the cz terms cancel): ond equation (whit
Zxty = Zc,e - t $Syst$ equation and a
makes the c_2 ten
on $\frac{2x+y}{2c} = e^{-x}$ 15
t $50 = e^{-3t} = (\frac{2x+y}{2c})^3$ Zc, Rt that into the second equation: $y=-2c_2\left(\frac{2x+y}{z^{c}}\right)^3$ Let $\frac{1}{r}=\frac{-2c_2}{(z_{c_i})^3}$ $ry = (2x+y)$ $\frac{z}{3}$ C c_2 and c_1 are arbitrary . $ry = (2x+y)$
We have eliminated t $y = \frac{c_2 \text{ and } c_1}{\Rightarrow r \text{ is arbitrary}}.$ and found a relationship between Vandy.

 $Probem / (corr0)$ S ketch $ry=[Zx+y]^2$ for various values of r. $(2x+y)^3=0$ $x=-\frac{1}{2}y$ y ← Solutions head toward origin . > $\begin{array}{rcl}\n & \text{Solutions head found} \\
 & r=0 & \Rightarrow & \text{Cz=0} \\
 & \times & \text{area} \\
 & \text{area} \\
 & \text{average} \\
 & \text{average}$ $\overline{\lambda}$ $\frac{2}{\pi}$ $\frac{2}{x}$ and y χ $g_{\text{reportional}}$ e^{-3t} $y = (z \star + y)^{3}$ λ some valves are: $\begin{matrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $(\frac{3}{2}, \frac{1}{8})$, $(-\frac{3}{16}, -\frac{1}{8})$ $(-3, 8), (3, -8)$ $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ $\begin{pmatrix} 4 & 4 \end{pmatrix} = (2x+y)^5$ r
r
r ↑ some values are: $(0,0), (0,2), (0,-2)$ H_{α} $+|iv|$
 $+|iv|$
 $+|iv|$
 $+|iv|$
 $+|iv|$
 $+|v|$ $\frac{1}{\ell}$ $\boldsymbol{\psi}$ Let us next try the, nullclines+ sample slopes approach .

Problem 1 (CONTD) The equation was $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
The x-nullcline is where $- x + y = 0$.
The y-nullcline is where $-3y = 0$, $y = 0$
 $x = 0$ an going to hand the job over to Mathematica: Phase Diagram for Logan p. 219 #3(a) $ln[19] =$ VectorPlot[{-x+y, -3y}, {x, -2, 2}, {y, -2, 2}] Out[19]= $In [20]:= \text{StreamPlot}[\{-x+y, -3y\}, \{x, -2, 2\}, \{y, -2, 2\}]$ $Out[20]=$ \overline{c}

Problem 1 (CONT σ) (b) We found: $\binom{1}{y}$ =c, $\binom{1}{3/5}e^{t}$ +c₂ $\binom{0}{1}e^{-4t}$. We have $x = c, e^t$ $y=\frac{3}{5}c,e^{t}+c_{z}e^{-4t}$ The first equation tells us , $= e^t$. We can stick that into the second equation and get x that into the sead
 $y=\frac{3}{5}x+c_2(\frac{x}{c_1})^{-4}$ Let $c_2c_1^4=r$ $x^{4}y - \frac{3}{5}x^{5} - r$ For sufficiently large χ , χ^4 always overwhelms r, and so for sufficiently large π , $y=\frac{3}{5}\chi$ So no matter what r is, eventually this approaches straight lines, straight lines expanding outward, unless ϵ , =0.
If ϵ , =0, then x =0 and y contracts, If $c, =0$, then $x=0$ and y' contracts It $c_1 = 0$, Usin $x=0$ and y contracts
inward for large to (because there is only
the e^{-4t} term. term. as one \vee \vee n \sim for large to as one
solated
special case, Y we \mathcal{J} ی w_i go $invard$ \vee v outward along the yaxis y along $y=\frac{y}{5}x$ I
I case
The
Le

Problem 2 Diagrams for p $.221 \neq 2$ 2 Wefound : $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ ω wt $\int cos wt$
- $\frac{1}{2}cos wt + usinwt$ + c-(- $usewt + \frac{1}{2}sinwt$) $e^{\frac{3}{2}t}$ in wt $\frac{1}{100}$ $\frac{1}{100}$ First, the $e^{\frac{3}{2}t}$ tells us solutions grow. Second, although $w=\frac{\sqrt{3}}{2}$ is not a lot larger First, the $e^{\frac{2}{2}t}$ tells us solutions grow.
Second, although $w = \frac{\sqrt{3}}{2}$ is not a lot larger
than \leq , I am going to assume the underlined $\frac{1}{100}$ $\frac{1}{2}$, $\frac{1}{2}$ am $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ am $\frac{1}{2}$, $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ (cos wt) $\frac{3}{2}$ $\frac{1}{2}$ $(y')=c_1 \left(\frac{\cos \omega t}{\omega \sin \omega t}\right)e^{\frac{3}{2}t}$ and for $c, = 0$, we have $\left(\begin{matrix} x\\ y \end{matrix}\right) = Cz\left(\begin{matrix} \sin \omega t\\ -\omega \cos \omega t \end{matrix}\right)e^{-z\omega t}$ These are ellipses, but exponentially expanding as they go counterclockwise. C_{1} =1, C_{2} =0 |
C₁ = $ellipses, but exponentia
\ns ² for example,
\n² for
\n² is
\n²$ c_2 -1, c_1 = 0

Problem Z (con $7/0$) I've gotten abo $Problem Z (conv 76)$ The gotten about analytical methods and bad approximations. $-$ nulldine is $y = -\frac{1}{2}x$. x -nullcline is $y=x$. y Phase Diagram for Logan p. 221 #2 $\ln[23]$ = VectorPlot[{x - y, x + 2y}, {x, -2, 2}, {y, -2, 2}] Out[23]= $In [24]:= \text{StreamPlot}[\{x - y, x + 2y\}, \{x, -2, 2\}, \{y, -2, 2\}]$ Out[24]= $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Although Mathematica completely outclasses me Athough Mathematica completely ourclessed instructive in production of flow it has every to Mathematica.

 $Probability: 3 Diagrams for p.22541$ In (a) we found: $\begin{pmatrix} x \\ y \end{pmatrix} = c, \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} t \\ 1 \end{pmatrix} e^{-3t}$ So one solution with ^C $, =1,$ $c_2=0$ is that ✗ decays as e- $\frac{3}{3}t$ toward the origin while y is identically zero. $x^2e^{iz^2}$ dentically term into 3th
 $x^2e^{iz^2}$ the $\int_{x^2}^{x^2}$ as e^{iz^2} [↓] ← y is identically zero;
 $x e^{ix} e^{ix}$
the $c_1 = -1$ $x = 1$
 $x = 1$
 $y = 2$
 $y = 0$
 $z = 0$ the $c_1 = -1$ θ $t = 0$ Case Another case to plot is $c_1=0$, $c_2=1$. The st

t in te-3^t causes x to grow but the e-3t is an exponential that always wins out. The
upshot is that π is t times y ar and y is decaying towards the origin . $J\bar{e}$ \leftrightarrow $K\bar{e}$ R_{c} That is some progress using special $cases$ of c_1 and c_2 .

 $Probem$ 3 $(covTb)$ $Proofem$ $\begin{array}{c} 2 & (convT^1D) \\ \hline \end{array}$
I could also try an analytical approach.

We have $y=c_ze^{-3t\vee}$ regardless of c_1 . So we can solve for t. $t=-$ ' $rac{1}{3}$ $ln \frac{y}{5}$ Cz S_0 $\chi = c_1 e^{-3t} + c_2 t e^{-3t}$ becomes $x = C_1 y - \frac{1}{3} y \ln x$ Let's take $C_{1}=1$ and $C_{2}=1$ $x = y - \frac{1}{3}y \ln y$ As an approximation (which always will eventually get good as time marches on), Vassume that ✗ and y are both tiny. For example, imaginethat y= ra y are soon ung. For example, majing upin
e⁻⁹ (or even smaller) which happens when t≥3. well then In ^y is ^a negative number, and $-\frac{1}{3}$ y lny is 3 times as big as y. Well then In y is a negative
- $\frac{1}{3}$ y Iny is 3 times as
So I am joing to neglect y. $x= \frac{1}{3}$ ylny This is one solution (with $c_1=c_2=1$) and it is an approximate solution only

valid very near the origin.

Problem 3 (CONTD) $I_n(t)$ we found: $\binom{1}{y} = c_1 \binom{1}{1} e^{2t} + c_2 \binom{t}{-1-t} e^{2t}$ Since this is very similar to (a), we could play
the same games, but let us go straight to the
graphical method. x-nulldine is $y=x$. y-nulldine is $y=-\frac{1}{3}x$. Phase Diagram for Logan p. 225 #1(b) $In [28]:= VectorPlot[\{x - y, x + 3y\}, \{x, -2, 2\}, \{y, -2, 2\}]$ Out[28]= $In [29] =$ StreamPlot[{x-y, x+3y}, {x, -2, 2}, {y, -2, 2}] $Out[29] =$

Problem 4 Logan p. 239 #13. An application! Logan is asking us to put some numbers into
his coupled chemical reactors example.

Therefore, applying conservation of mass to each reactor we have

$$
VC'_{1} = qc_{\text{in}} - q_{1}C_{1} + q_{2}C_{2},
$$

$$
VC'_{2} = q_{1}C_{1} - q_{2}C_{2} - qC_{2}.
$$

which is a linear, nonhomogeneous system for C_1 and C_2 . If $c_{\rm in} = 0$, then the system is homogeneous and has the form

$$
C_1' = -\frac{q_1}{V}C_1 + \frac{q_2}{V}C_2, \tag{4.41}
$$

$$
C_2' = \frac{q_1}{V}C_1 - \left(\frac{q_2 + q}{V}\right)C_2.
$$
 (4.42)

The coefficient matrix is

$$
A = \begin{pmatrix} -\frac{q_1}{V} & \frac{q_2}{V} \\ \frac{q_1}{V} & -\frac{q_2+q}{V} \end{pmatrix}.
$$

The trace is clearly negative and the determinant $(= q_1 q/V^2)$ is positive. Therefore the origin is asymptotically stable. Therefore the concentrations eventually go to zero. \Box

Figure 4.21 Coupled chemical reactors.

 $Problem$ 4 $(corr6)$ To summarize what we know so far, - q.lv oh/✓ $\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = A \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ where $A = \begin{pmatrix} 2I & 12I \\ 2I & -(2I)I \end{pmatrix}$ Logan has not yet used conservation of volume. Logan has not yet used conservation or voime.
It has to be that $q+q-2q$, so we have $\begin{array}{l} t_0 \text{ be that } 2t_2 = 2t_1, s_0 \\ -2t_1V & 2t_1V_0 \\ 2t_1/V & -2t_1/V \end{array} = \begin{array}{l} t_0 & t_0 \\ t_1 & t_1 \\ t_2 & t_1 \end{array}$ - $A = ($ $\frac{1}{4}$ The nullelines are x -nulleline $y=16x$ $-wultline y=x$ We are meant to use qualitative methods in
this section. I will have Mathematical y We are meant to use qualitative methods in this section. I will have Mathematical
do a stream plot focused on low do a stream plot focused on low
concentrations (since we are starting $c_1 = 0$, $c_2 = \frac{3}{40} = 0.075$ Stream Plot for Logan p. 239 #13 $In [30]:$ StreamPlot $[\{-4 \times +y/4, 4 \times -4 y\}, \{x, -0.1, 0.1\}, \{y, -0.1, 0.1\}]$ * 0.10 $\begin{array}{c} \nabla k^{\alpha} \\ \nabla k^{\beta} \nabla k$ •• 0.05

