Problem Set 5 Solution

Before doing either Problem 1 or Problem 2, let's recall the two major results from Friday:

 $\sin \delta = \sin \lambda \cdot \sin \epsilon$ $\tan \alpha = \tan \lambda \cdot \cos \epsilon$

In these formulae,

 $\delta \equiv$ declination of the Sun $\alpha \equiv$ right ascension of the Sun $\lambda \equiv$ ecliptic longitude of the Sun $\epsilon \equiv$ obliquity of the ecliptic

In Van Brummelen, the derivation of those two results culminated at the top of p. 51.

Problem 1

```
[n[398]:= \varepsilon = AstronomicalData["Earth", "Obliquity"];
```

The numerical value of ϵ is about 23.45°.

From Appendix A, p. 175, for Feb. 24:

```
\ln[399]:= \lambda = 336.3^{\circ};
```

We would like α and δ . Solving the above equations for α and δ gives:

 $\alpha = \arctan(\tan\lambda \cdot \cos\epsilon)$ $\delta = \arcsin(\sin\lambda \cdot \sin\epsilon)$

There are two issues with just sticking this into your calculator: (1) Your calculator might work in radians by default. That is the way Mathematica works. We have been working in decimal degrees or even in hms (which is a sexagesimal system) for right ascension. (2) The sine, cosine, and tangent functions do not have unique inverses. For example, $\sin \theta = \sin (180^{\circ}-\theta)$. To make an even more explicit example, $\sin 15^{\circ} = \sin (180^{\circ}-15^{\circ}) = \sin 165^{\circ} = 0.2588$. Thus there is no way in heck that $\arcsin(0.2588)$ can uniquely compute a value. It could be 15° . It could be 165° . Which one a particular calculator or program picks is up to the calculator manufacturer or the programmer. There are agreed-upon conventions, but the conventions don't change the fact that sin, cos, and tan do not have unique inverses!

 $\ln[409]:= \alpha = ArcTan[Tan[\lambda] \times Cos[\varepsilon]] / Degree$

```
\ln[401] = \delta = \operatorname{ArcSin}[\operatorname{Sin}[\lambda] \times \operatorname{Sin}[\varepsilon]] / \operatorname{Degree}
```

```
Out[401] = -9.20426
```

Before considering ourselves done with this problem, we should understand the minus signs. One way of interpreting the minus sign in α is to just note that it can mean going to the left (west) along the ecliptic from the First Point of Aries. A second way of interpreting the minus sign in α , is to note that when describing a position on a circle, you can always add 360° to the angle and get to the same position. So an equally valid answer for α in degrees is α + 360° = 338.0647°. Also, it is common to write right ascensions in hours, minutes, and seconds, so we could convert and get α = 22h 32m 16s. Regarding the minus sign in δ , it just means that you go down from the celestial equator.

Problem 2

We are given α = 8.421h and δ = 19.22°. We can solve either of the first two formulae to get λ . We should use both and make sure we get the same answer:

 $\lambda = \arcsin(\sin \delta / \sin \epsilon)$ $\lambda = \arctan(\tan \alpha / \cos \epsilon)$

First we'll get λ from δ (upper formula):

```
 \ln[403] = \delta = 19.22 \text{ Degree;} 
 \text{ArcSin}[\text{Sin}[\delta] / \text{Sin}[\epsilon]] 180 / \text{Pi}
```

```
Out[404]= 55.8155
```

We have a problem! 55.8155° is nowhere even close to α (which is 8.421 × 15 = 126.315°. Ah, but we expected this problem. Because $\sin(180^\circ - \theta) = \sin \theta$ we have an ambiguity. We need $180^\circ - \lambda = 180^\circ - 55.8155^\circ = 124.18^\circ$. That is our value for λ using δ .

Now we'll get λ from α (lower formula):

```
In[405]:= α = 8.421 × 15 °;
ArcTan[Tan[α] / Cos[ε]] 180 / Pi
```

```
Out[406] = -56.0093
```

Again, we have a problem! -56.0093° is not even close to α (even if we add 360°). Because tan(180°+ θ) = tan θ , the arctan function also has an ambiguity. We need 180° + λ = 180° - 56.01° = 123.99°. That is our value for λ using α .

So what day is it?

We have gotten two values for λ which are pretty close: 124.18° and 123.99°. Consulting Van Brummelen's table on p. 177, we see that it must be July 28. By the way, if you put this into SkySafari Pro 6 (a very accurate program used to drive telescopes), you get July 26, 2022 at 5:30pm as the time this year that λ will be 124°.