Problem Set 5 Solution

Before doing either Problem 1 or Problem 2, let's recall the two major results from Friday:

sin δ = sin $\lambda \cdot$ sin ϵ tan $α = tanλ \cdot cos ε$

In these formulae,

 δ = declination of the Sun α = right ascension of the Sun λ = ecliptic longitude of the Sun ϵ = obliquity of the ecliptic

In Van Brummelen, the derivation of those two results culminated at the top of p. 51.

Problem 1

```
In[398]:= ϵ = AstronomicalData["Earth", "Obliquity"];
```
The numerical value of ϵ is about 23.45°.

From Appendix A, p. 175, for Feb. 24:

In[399]:= **λ = 336.3 °;**

We would like α and δ . Solving the above equations for α and δ gives:

 α = arctan(tan $\lambda \cdot \cos \epsilon$) δ = arcsin(sin $\lambda \cdot \sin \epsilon$)

There are two issues with just sticking this into your calculator: (1) Your calculator might work in radians by default. That is the way Mathematica works. We have been working in decimal degrees or even in hms (which is a sexagesimal system) for right ascension. (2) The sine, cosine, and tangent functions do not have unique inverses. For example, sin θ = sin (180°- θ). To make an even more explicit example, sin 15° = sin (180°-15°) = sin 165° = 0.2588. Thus there is no way in heck that arcsin(0.2588) can uniquely compute a value. It could be 15º. It could be 165º. Which one a particular calculator or program picks is up to the calculator manufacturer or the programmer. There are agreed-upon conventions, but the conventions don't change the fact that sin, cos, and tan do not have unique inverses!

In[409]:= **α = ArcTan[Tan[λ] × Cos[ϵ]] / Degree** $Out[409] = -21.9353$

In[401]:= **δ = ArcSin[Sin[λ] × Sin[ϵ]] / Degree**

```
Out[401] = -9.20426
```
Before considering ourselves done with this problem, we should understand the minus signs. One way of interpreting the minus sign in α is to just note that it can mean going to the left (west) along the ecliptic from the First Point of Aries. A second way of interpreting the minus sign in α , is to note that when describing a position on a circle, you can always add 360° to the angle and get to the same position. So an equally valid answer for α in degrees is α + 360° = 338.0647°. Also, it is common to write right ascensions in hours, minutes, and seconds, so we could convert and get α = 22h 32m 16s. Regarding the minus sign in δ , it just means that you go down from the celestial equator.

Problem 2

We are given α = 8.421h and δ = 19.22°. We can solve either of the first two formulae to get λ. We should use both and make sure we get the same answer:

 λ = arcsin(sin δ / sin ϵ) λ = arctan(tan α / cos ϵ)

First we'll get λ from δ (upper formula):

```
In[403]:= δ = 19.22 Degree;
ArcSin[Sin[δ] / Sin[ϵ]] 180 / Pi
```

```
Out[404]= 55.8155
```
We have a problem! 55.8155° is nowhere even close to α (which is 8.421 \times 15 = 126.315 °. Ah, but we expected this problem. Because sin(180°- θ) = sin θ we have an ambiguity. We need 180° - λ = 180° -55.8155° = 124.18°. That is our value for λ using δ.

Now we'll get λ from α (lower formula):

```
In[405]:= α = 8.421 × 15 °;
ArcTan[Tan[α] / Cos[ϵ]] 180 / Pi
```

```
Out[406] = -56.0093
```
Again, we have a problem! -56.0093° is not even close to α (even if we add 360°). Because tan(180°+ θ) = tan θ , the arctan function also has an ambiguity. We need $180^\circ + \lambda = 180^\circ - 56.01^\circ = 123.99^\circ$. That is our value for λ using α .

So what day is it?

We have gotten two values for λ which are pretty close: 124.18º and 123.99º. Consulting Van Brummelen's table on p. 177, we see that it must be July 28. By the way, if you put this into SkySafari Pro 6 (a very accurate program used to drive telescopes), you get July 26, 2022 at 5:30pm as the time this year that $λ$ will be 124 $^{\circ}$.