
Problem Set 8 — Solution
Due Thursday, April 7

Problem 1 — Summer Solstice
The summer solstice is the longest day of the year.

(a) How much daylight is there at Deep Springs on the summer solstice?

The summer solstice occurs when the ecliptic longitude of Sun λ = 90º. On that day, δ = ϵ = 23.44º and α 
= 90º.

The usual formula for η, the ortive amplitude is sin η = sin δ / cos ϕ.

In[' ]:= η = ArcSin[Sin[23.44 Degree] / Cos[37.4 Degree]] / Degree

Out[' ]= 30.0484

We can then get the ascensional difference (or “equation of daylight”) from cos n cos δ = cos η.

In[' ]:= n = ArcCos[Cos[η Degree] / Cos[23.44 Degree]] / Degree

Out[' ]= 19.3591

We convert this to hours, multiply by 2 and add it to 12, and we have the amount of daylight:

In[' ]:= 12 + 2 n / 15

Out[' ]= 14.5812

This is 14 h 35 m. If you go to www.timeanddate.com,  they say sunrise is 5:33 am and sunset is 8:17pm. 
So they get 14 hours and 44 minutes. The extra 9 minutes is caused by factors we discussed in class.

(b) Where along the horizon will the sun rise and set at Deep Springs on the summer solstice?

That is what η tells us. The answer is 30.0 degrees north of east for sunrise, and 30.0 degrees north of 
west for sunset.

(c) Repeat for Seattle, latitude 47.6º.

In[' ]:= ηSeattle = ArcSin[Sin[23.44 Degree] / Cos[47.6 Degree]] / Degree

Out[' ]= 36.1518

In[' ]:= nSeattle = ArcCos[Cos[ηSeattle Degree] / Cos[23.44 Degree]] / Degree

Out[' ]= 28.3475



In[' ]:= 12 + 2 nSeattle / 15

Out[' ]= 15.7797

So Seattle gets 15h 47m of daylight, and the Sun rises 36.1º degrees north of east, and sets 36.1º north 
of west.

Problem 2 — Winter Solstice
Repeat all of Problem 1 for the Winter Solstice

First Deep Springs:

(a) The longitude of Sun is λ = 270º. On that day, δ = -ϵ = -23.44º and α = 270º.

In[' ]:= 12 - 2 n / 15

Out[' ]= 9.41879

This is 9 h 25m.

(b) We still just need η. The answer is 30.0 degrees south of east for sunrise, and 30.0 degrees south of 
west for sunset.

(c) Repeat for Seattle, latitude 47.6º.

In[' ]:= 12 - 2 nSeattle / 15

Out[' ]= 8.22034

So Seattle gets 8h 13m of daylight, and the Sun rises 36.1º degrees south of east, and sets 36.1º south of 
west.

Problem 3 — Arcturus
The star Arcturus, part of the constellation Boötes, is the brightest start in the northern hemisphere of 
the celestial sphere.

(a) How long is Arcturus visible in the sky each day? Does it change?

To answer this, we need the right ascension and declination of Arcturus, which is easy to look up. 
Actually, we only need the declination for part (a). Anyway they are right ascension 14h 15m 40s, 
declination +19° 10’ 56”.
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In[' ]:=

αArcturus = N[(14 + 15 / 60 + 40 / 3600) * 15]
δArcturus = N[19 + 10 / 60 + 56 / 3600]

Out[' ]= 213.917

Out[' ]= 19.1822

In[' ]:= ηArcturus = ArcSin[Sin[δArcturus Degree] / Cos[37.4 Degree]] / Degree

Out[' ]= 24.4315

In[' ]:= nArcturus = ArcCos[Cos[ηArcturus Degree] / Cos[δArcturus Degree]] / Degree

Out[' ]= 15.4253

In[' ]:= 12 + 2 nArcturus / 15

Out[' ]= 14.0567

This is 14h 3m. It does not change because it only depends on the star’s right ascension and declina-
tion, and these do not change.

(b) When will Arcturus appear on the horizon relative to Sunset today.

Let’s take “today” to mean the date the problems were distributed, March 31, 2022.

According to Ptolemy’s tables λ = 10.6º on March 31st. Therefore,

In[' ]:= λ = 10.6;
ϵ = 23.44;
δSun = ArcSin[Sin[λ Degree] Sin[ϵ Degree]] / Degree
αSun = ArcCos[Cos[λ Degree] / Cos[δSun Degree]] / Degree

Out[' ]= 4.1963

Out[' ]= 9.74275

So Sun’s declination is 4.20º and its right ascension is 0h 39m.

Now to bring this mess home. If both Sun and Arcturus had zero declination, then the amount that 
Arcturus trails Sun is:

In[' ]:= αArcturus - αSun

Out[' ]= 204.174

However, due to Sun’s declination, it sets later by nSun where
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In[' ]:= ηSun = ArcSin[Sin[δSun Degree] / Cos[37.4 Degree]] / Degree;
nSun = ArcCos[Cos[ηSun Degree] / Cos[δSun Degree]] / Degree;
nSun

Out[' ]= 3.21575

Meanwhile, due to Arcturus’ declination, it rises earlier by nArcturus where

In[' ]:= ηArcturus = ArcSin[Sin[δArcturus Degree] / Cos[37.4 Degree]] / Degree;
nArcturus = ArcCos[Cos[ηArcturus Degree] / Cos[δArcturus Degree]] / Degree;
nArcturus

Out[' ]= 15.4253

Both of these conspire to reduce the amount that the rise of Arcturus trails the setting of the Sun. There 
is one more effect. We are comparing a rise with a set. This is an additional 12 hours of reduction.

In[' ]:= (αArcturus - αSun - nSun - nArcturus) / 15 - 12

Out[' ]= 0.36886

Our answer is 22m. SkySafari says sunset is at 7:14 and Arcturus rises at 7:26, which is only 12 minutes 
apart. I think we can attribute this to the usual two effects: (i) The Sun’s disk is substantial, delaying 
sunset a bit, and there is atmospheric refraction, delaying sunset, and making the rise of Arcturus 
sooner.

Problem 4 — Mizar
The star Mizar is in the Ursa Major constellation (the Big Bear of which the Big Dipper is the most promi-
nent part). What happens if you try to calculate the ortive amplitude or the equation of daylight of 
Mizar using the spherical trig identities? Why?

In[' ]:= αMizar = N[(13 + 23 / 60 + 55 / 3600) * 15]
δMizar = N[54 + 55 / 60 + 38 / 3600]

Out[' ]= 200.979

Out[' ]= 54.9272

In[' ]:= ηMizar = ArcSin[Sin[αMizar Degree] / Cos[37.4 Degree]] / Degree

Out[' ]= -26.7875

In[' ]:= nMizar = ArcCos[Cos[ηMizar Degree] / Cos[δMizar Degree]] / Degree

Out[' ]= 0. + 57.8023 ⅈ

Mathematica gives an imaginary number for the equation of daylight. This is because Mizar is well 
within 37.4º of the celestial north pole. Therefore it never rises and sets. Most calculators will display 
NaN (for not a number) or Error.

Problem 5 — Home Town
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Problem 5 — Home Town
Which direction is your home town from Deep Springs?

This is a Law of Cosines problem now that we have that tool.

In[' ]:= ϕDeepSprings = 37.3717;
λDeepSprings = -117.9842;
ϕNanaimo = 49.1659;
λNanaimo = -123.9401;

dλ = (λDeepSprings - λNanaimo)

Out[' ]= 5.9559

The triangle we form has 90º - ϕNanaimo as one, side 90º - λNanaimo as another side, and dλ as the 
angle between those two sides. From these we get the distance from Deep Springs to Nanaimo.

In[' ]:= d = ArcCos[Cos[90 Degree - ϕDeepSprings Degree] Cos[90 Degree - ϕNanaimo Degree] +

Sin[90 Degree - ϕDeepSprings Degree]
Sin[90 Degree - ϕNanaimo Degree] Cos[dλ Degree]] / Degree

Out[' ]= 12.5562

Then we use the Law of Sines to get the direction.

In[' ]:= a = ArcSin[Sin[90 Degree - ϕNanaimo Degree] Sin[dλ Degree] / Sin[d Degree]] / Degree

Out[' ]= 18.1852

That is how much west of north I need to go. The distance d is 753 nautical miles or 867 statute miles.

Problems 6 (Optional) — Mecca from Deep Springs
What direction is Mecca from Deep Springs?

In[' ]:= ϕMecca = 21.3891;
λMecca = 39.8579;

dλMecca = (λMecca - λDeepSprings)

Out[' ]= 157.842

In[' ]:= dMecca = ArcCos[Cos[90 Degree - ϕDeepSprings Degree] Cos[90 Degree - ϕMecca Degree] +

Sin[90 Degree - ϕDeepSprings Degree]
Sin[90 Degree - ϕMecca Degree] Cos[dλMecca Degree]] / Degree

Out[' ]= 117.643
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In[' ]:= aMecca = ArcSin[
Sin[90 Degree - ϕMecca Degree] Sin[dλMecca Degree] / Sin[dMecca Degree]] / Degree

Out[' ]= 23.3555

Problems 7 (Optional) — LAS to ORD
This was to make up your own problem. I am interested in why flying from LAS to ORD (which got made 
into a Term 5 exam problem) has no solution if you accidentally put in the wrong value for the initial 
direction of the flight. I am interested because the wrong value almost got put into the exam. Acckk! 
Here is the problem:

Las Vegas (LAS) has latitude 36º. Chicago O’Hare (ORD) has latitude 42º. When a plane takes off on a 
great circle route from Las Vegas headed to O’Hare, its initial compass heading is 72º (THIS IS THE 
WRONG VALUE THAT ALMOST GOT ONTO THE EXAM). What is the plane’s compass heading upon arrival 
into O’Hare?

The solution is a straightforward application of the Law of Sines.

sin (?) / sin (90º - 36º) = sin (72º) / sin(90º - 42º)

In[' ]:= N[ArcSin[Sin[72 Degree] Sin[54 Degree] / Sin[48 Degree]] / Degree]

Out[' ]= 90. - 15.1918 ⅈ

As you can see, Mathematica has given us an imaginary number, which as in Problem 4 is its way of 
telling us there is no triangle that can work.

The right value, that works just fine, is 66º.

In[' ]:= N[ArcSin[Sin[66 Degree] Sin[54 Degree] / Sin[48 Degree]] / Degree]

Out[' ]= 84.

(This is the direction from which the plane arrives at ORD. You need to take 180º - 84º = 96º to get the 
compass heading upon arrival.)

How can the small difference between 66º and 72º cause there to be no solution. Drawing the whole 
thing out on a Lenart sphere is the only way to clearly see it, and sure enough, the drawing on the 
sphere shows that the 72º takeoff line never crosses the ORD line of latitude.
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Problem 8
Van Brummelen p. 92 #6.

(a) Is there a right spherical triangle with B = 100º (big) but b = 30º (small?).

Well maybe, and if so we can compute its other sides. By 1.3, II.3, and II.4 and choosing different values 
of the arcsin when necessary so that we don’t get negative numbers

In[' ]:= B = 100;
b = 30;
a = 180 - N[ArcSin[Tan[b Degree] / Tan[B Degree]] / Degree]

Out[' ]= 185.843

In[' ]:= A = 180 - N[ArcSin[Cos[B Degree] / Cos[b Degree]] / Degree]

Out[' ]= 191.567

In[' ]:= c = N[ArcSin[Sin[b] / Sin[B]]]

Out[' ]= 1.5708 - 1.28833 ⅈ

Now we have foundered. The equation for c tells us there is no solution. Sigh.

(b) Show that no isosceles right spherical triangle can have its hypotenuse greater than 90º nor its 
acute angle less than 45º.

Well, by isosceles, we mean that a = b and A = B.

By II.5, cos c = cos a cos b, but since a = b, cos c = cos2 a. The right hand side is always non-negative. 
But if c > 90º then the left hand side is negative.

The other thing we are supposed to show is that its acute angle must not be less than 45º. By I.2,

cos c = cot A cot B, but since A = B, cos c = cot2A. But if A > 45º, cot A > 1, and cos c cannot be greater 
than 1.
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Problem 9
Van Brummelen p. 92 #8.

A quadrantal triangle has one of its sides (not one of its angles) equal to 90º.

(a) In general, how might the identities of Napier’s rules be used to solve quadrantal triangles?

We can call the sides d, e, and f, with f = 90º, and the angles D, E, and F. The polar triangle to DEF has 
sides 180-D, 180-E, and 180-F, and angles 180-d, 180-e, and 180-f = 180-90 = 90. So identifying:

a = 180-D
b = 180-E
c = 180-F
A = 180-d
B = 180-e

we can turn Napier’s Rules into statements about D, E, F, d, and e. First we need to translate the dia-
gram:

It becomes:

Then we have to do something about all the 180’s, but that is easy because sin(180-θ) is just sin θ 
whereas cosine, tangent, and cotangent all satisfy fun(180-θ) = -fun θ.

Napier’s Rule I for Quadrantal Triangles: The sine of any circular part is equal to the product of the 
tangents of the two parts adjacent to it. If there are zero or two sines in the resulting equation, the 
equation gets a minus sign.

Napier’s Rule for II Quadrantal Triangles: The sine of any circular part is equal to the product of the 
cosines of the two parts opposite to it. If there are zero or two sines in the resulting equation, the 
equation gets a minus sign.

(b) Solve the triangle D = 69º, F = 78º.

sin D = sin F sin d
sin e = tan D cot F
cos F  = - cos D cos E
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In[' ]:= angleD = 69;
angleF = 78;
d = N[ ArcSin[Sin[angleD Degree] / Sin [angleF Degree]] / Degree]

Out[' ]= 72.6378

In[' ]:= e = N[ ArcSin[Tan[angleD Degree] / Tan [angleF Degree]] / Degree]

Out[' ]= 33.6232

In[' ]:= angleE = N[ ArcCos[-Cos[angleF Degree] / Cos [angleD Degree]] / Degree]

Out[' ]= 125.462

(c) Explain why a spherical triangle with three right angles must have all three sides equal to 90º as 
well.

By Rule II for Quadrantal Triangles, sin E = sin e sin F. Since sin E and sin F are 1, sin e must be 1. In other 
words, e must be 90º. This of course applies to all three sides.
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