Manhattan Project-Assignment Z-Solution

That's a lot! A huge IGW nuclear reactor does

$$
\underbrace{86,400} \times 10^{9} \mathrm{~J} \text { in a day }
$$

1 gram of matter does
2. $e^{t} e^{\text {-Annihilation for } 24 \text { hours. } \#_{1}^{t}}$

$$
\text { Total mass }=2 \times 9.1 \times 10^{-31} \mathrm{~kg}
$$

But the resulting energy is shared between two photons, so divide by Z.

$$
E_{\gamma}=901 \times 10^{-31} \mathrm{~kg} \times\left(3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=81.9 \times 10^{-15} \mathrm{~J}
$$

$$
\begin{aligned}
& \text { 1. } E=m c^{2} \\
& E=m c^{2} \quad m=1 g=0.001 \mathrm{~kg} \\
& \mathrm{c}=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& E=0.001 \mathrm{~kg} \times\left(3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \\
& =9 \times 10^{13} \underbrace{\mathrm{~kg} \frac{m^{2}}{s^{2}}}_{J}
\end{aligned}
$$

3. The Coulomb and the electron-Volt
(a) One electron freely moving from the negative terminal to the positive terminal of a 9V battery releases

$$
1.6 \times 10^{-19} \mathrm{C} \times 9 \mathrm{~V}=14.4 \times 10^{-19} \mathrm{~J}
$$

(because $1 C \times I V=I J) \quad<$ morestunderd to write
$1.44 \times 10^{-18} \mathrm{~J}$
(b) If it were IV, then wed have
or about

$$
1.400 t \times 10^{-195}
$$

$$
1.6 \times 10^{-19} \mathrm{C} \times 1 \mathrm{~V}=1.6 \times 10^{-19} \mathrm{~J}
$$

(c) The combination we found in (b) is called the eV .

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

4. Tiny Particles, Enormous Numbers, N_{A}
(a) mass $=$ \#of particles \times mass per particle

$$
\text { So \#of particles }=\frac{\text { mass }}{\text { mass per particle }}
$$

So it would take

$$
\frac{1 \mathrm{~kg}}{9.1 \times 10^{-31} \mathrm{~kg} / \text { electron }}
$$

Which is to make 1 kg .
$4(b)$ charge $=\#_{\text {of }}$ particles x charge per partite

$$
\text { So \#t of particles }=\frac{\text { charge }}{\text { charge per particle }}
$$

So it would take

$$
\frac{10}{1.6 \times 10^{-19} \mathrm{C}} \text { electron }
$$

Which is

$$
6.25 \times 10^{18} \text { electrons }
$$

to make $1 \subset$.
(c)

$$
\begin{aligned}
& \text { \#of Carbon-12 atoms }=\frac{\text { Mass }}{\text { mass per Carbon-12 atom }} \\
& =\frac{\lambda z \text { grams }}{x 2-1-66 \times 10^{-24} \text { grams/Carbon-12 atom }} \\
& =6.02 \times 10^{23} \text { Carbon-12atoms }
\end{aligned}
$$

(d) $1 \mathrm{~kg}=1000 \mathrm{~g}$, so there are $\frac{1000}{12} N_{A}$ Carbon- 12 atoms in 1 kilogram.

$$
\begin{aligned}
& \frac{1000}{12} N_{A}=\frac{1000}{12} \times 6.02214076 \times 10^{23} \\
& =501.8406 \overline{3} \times 10^{23} \\
& =5.018406 \overline{3} \times 10^{25} \quad \text { Carbon -12 atoms }
\end{aligned}
$$

5 Measuring Mass in el
(a) In Problem Z, we got $8.2 \times 10^{-14} \mathrm{~J}$.

In Part 3(c), we got $1.6 \times 10^{-19} \mathrm{~J}=1 \mathrm{eV}$.
So we can convert what we got in Problem Z to eN by doing

$$
E_{\gamma}=8.2 \times 10^{-14} \mathrm{~J} \frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}}=5.125 \times 10^{5} \mathrm{eV}
$$

If we had kept more decimal places at every step, we would have gotten $E_{\gamma}=5.11 \times 10^{5} \mathrm{eV}$
(b) Using $10^{6} \mathrm{eV}=1 \mathrm{MeV}$, this can be (and usually is) written as $E_{\gamma}=0.511 \mathrm{MeV}$
6 Energy Released in fusion
(a) Deuterium atomic mass $=2.014102 \mathrm{u}$

Tritiven atomic mass $=3.016049 u$

$$
\text { Total } \quad=5.03015 / u
$$

(b) Helivm-4 atomic mass $=4.002603 u$
neutron mass $=1.008865 \mathrm{u}$

$$
\text { Total } \quad=5.011468 u
$$

(c) Difference (a)-(b) is

$$
5.030151 u-5.011468 u=0.018683 u
$$

\#6 is (CONT)
$6(d)$ Convert $0.018683 u$ to J using

$$
1 u=1.66054 \times 10^{-21} \mathrm{~kg}
$$

of course we have to multiply by c^{2}.
I'm going to keep 5 significant figures at every step now. $c=2.9979 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\begin{aligned}
& 0.018683 \times 1.66054 \times 10^{-27} \mathrm{~kg} \times\left(2.9979 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \\
& =0.27882 \times 10^{-11} \mathrm{~J}
\end{aligned}
$$

(e) In $3(c)$ we found $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$, but the conversion factor to 5 significant figures is

$$
1 \mathrm{ev}=1.6022 \times 10^{-19} \mathrm{~J}
$$

So we have

$$
\begin{aligned}
& 0.27882 \times 10^{-11} \mathrm{~J} \times \frac{\text { leV }}{1.6022 \times 10^{-19} \mathrm{~J}} \\
& =0.17402 \times 10^{8} \mathrm{eV}
\end{aligned}
$$

(f) Using $10^{6} \mathrm{eV}=1 \mathrm{MeV}$ we have 17.40 Z MeV

A The agreed-upon value is 17.6 Mel . I am not sure how we got off by 1% when we were careful to keep 5 sig figs.

