Manhattan Project - Assignment 3-Solution

1. Using $R(t)=-\lambda N(t)$ and $\lambda=\frac{\ln 2}{t_{1 / 2}}$
(a) Convert 138 days to seconds

138 days $=138$ gays $\frac{24 \text { hours }}{\text { Ray }} \frac{60 \text { minutes }}{\text { hour }} \frac{60 s e c o n d s}{\text { minute }}$

$$
\begin{aligned}
& =138.24 \cdot 60.60 \mathrm{~s}=11923200 \mathrm{~s} \\
& =1.19 \times 10^{7} \mathrm{~s}
\end{aligned}
$$

(b)

$$
\begin{array}{rlrl}
R & =-\lambda N=-\frac{\ln 2}{t_{1 / 2}} N & N & =N_{A} \\
& =-\frac{\ln 2}{1.19 \times 10^{7} \mathrm{~s}} \cdot 6.02 \times 10^{23} & & =6.02 \times 10^{23} \\
& =-\frac{\ln 2}{1.19} \times 6.02 \times 10^{16} / \mathrm{s} & t_{1 / 2} & =1.19 \times 10^{7} \mathrm{~s}
\end{array}
$$

K this port I have to stick into a calculator
$=-3.51 \times 10^{16} / \mathrm{s} \quad$ The minus sign just means we are losing means we are losing them
atoms, not gaining
We are losing 3.51×10^{16} Polonium atoms per second
(c) $3.51 \times 10^{16} \frac{1}{5} \cdot \frac{1 C i_{i}^{10}}{3.7 \times 10^{10} / \mathrm{x}}=9.5 \times 10^{5} C_{i}$
2. Alpha Decay of Polonium -210
(a) The A and Z that balance

$$
\begin{aligned}
& 210 \text { Po } \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{z}^{A} x
\end{aligned}
$$

are $A=206, z=82$.
(b) That is Lead (symbol Pb).

The isotope is Lead-206. We could also have written: ${ }_{82}^{206} \mathrm{~Pb}$.
3. β^{-}and β^{+}Decay
(a) pl in $\begin{array}{ccc}A & Z & N \\ 210 & 84 & 12\end{array}$

If β - decay, z increases by 1 and W decreases by 1 and A stays the same
So we would have $\left.\begin{array}{ccc}A & z & N \\ 210 & 85 & 125\end{array}\right]$ and $z=85$ is Astatine $\leftarrow 1 \begin{array}{lll}210 & 85 & 125\end{array}$
(b) If β^{+}decay,
$\underset{\sim}{z}$ decreases by $\frac{1}{1}$
A stays the same
So we would have $\begin{array}{ccc}A & z & N \\ 210 & 83 & 127\end{array}$ and $z=83$ is Bismuth
4. Energy Released in Poloniom-210 α-Decay

$$
{ }_{84}^{210} \mathrm{Po} \longrightarrow \begin{aligned}
& 4 \\
& 2 \mathrm{He}+{ }_{82}^{206} \mathrm{~Pb}
\end{aligned}
$$

(a) Total mass on the leff-hand side is simply zor.982874u.
(b) Total mass on right-hand side is

$$
\begin{array}{lr}
\text { Helium-4 } & 4.002603 u \\
\text { Lead - } 206 & 205.974449 u \\
\text { Total } & 209.977052 u
\end{array}
$$

Here we only
have four nave fours figitiant \downarrow signitivent
(c) $209.98287 t-209.977052=0.005822 u$
(d)

$$
\begin{aligned}
E= & m c^{2}=0.005822 \times \frac{1.66054 \times 10^{-27} \mathrm{~kg}}{1 \mathrm{k}} \\
& \cdot\left(2.99792458 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \\
= & 0.08689 \times 10^{-11} \mathrm{~J} \\
= & 8.689 \times 10^{-13} \mathrm{~J}
\end{aligned}
$$

(e) $8.689 \times 10^{-13} \mathrm{Y} \cdot \frac{\mathrm{leV}}{1.602176634 \times 10^{-19} \mathrm{Y}}$

$$
=5.423 \times 10^{6} \mathrm{eV}
$$

(f) $5.423 \times 10^{6} \mathrm{eV}=5.423 \mathrm{MeV}$
(g) $0.005822 x \cdot \frac{931.4 \mathrm{MeV}}{6}=5.423 \mathrm{MeV}$
π we are $1 / 3 \%$ off of the aces ted value

