Manhattan Project - Assignment 3 - Half Lives and Decays

Let's recap the equations on p .26 before doing any problems.

Decay Rate Derivation

I derived the equation for decay rate without using any calculus. I had to use some properties of the exponential though. One of the properties was this one that you may or may not be familiar with:
$e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots$

If you are curious and know factorials, the denominators are $0!=1,1!=1,2!=2,3!=6$, etc. I will use the above formula to make an approximation below. Another property of the exponential that I used is:
$e^{x+y}=e^{x} e^{y}$

That's actually true whatever base is being exponentiated. For example:
$10^{x+y}=10^{x} \cdot 10^{y}$

Finally, I used $e^{0}=1$. At least I'm not using any calculus!
So we start with the claim that
$N(t)=N_{0} e^{-\lambda t}$
describes radioactive decay. If you have N_{0} atoms at time $t=0$, this formula is the one that tells you how much you have at any later time.So it certainly tells you how much you have at both time t and time $t+\Delta t$ where Δt is a small amount of time. We have:
$N(t+\Delta t)=N_{0} e^{-\lambda(t+\Delta t)}=N_{0} e^{-\lambda t} e^{-\lambda \Delta t}=N(t) e^{-\lambda \Delta t}=N(t)\left[1-\lambda \Delta t+\frac{(\lambda \Delta t)^{2}}{2}-\frac{(\lambda \Delta t)^{3}}{6}+\ldots\right]$

Here comes the tricky part! If $\lambda \Delta t$ is small (think of something like 0.01), then every term in the infinite series is 0.01 times as small as the previous one. Let's neglect all but the first two!
$N(t+\Delta t)=N(t)[1-\lambda \Delta t]=N(t)-\lambda \Delta t N(t)$
Rearrange:
$N(t+\Delta t)-N(t)=-\lambda \Delta t N(t)$

Rearrange more:
$\frac{N(t+\Delta t)-N(t)}{\Delta t}=-\lambda N(t)$

What we have on the left side is what Reed calls $R(t)$ in equation 2.3. It is the rate that the number of particles is changing. The right-hand-side of the equation has a minus sign because the number of particles is decreasing. Let's summarize before we move on:
$R(t)=-\lambda N(t)$

Relationship Between λ and $t_{1 / 2}$

There is another thing we derived in class that I want to re-derive here: the relationship between λ and $t_{1 / 2}$.
$t_{1 / 2}$ is the time at which you have half as many particles. So on the left-hand side of,
$N(t)=N_{0} e^{-\lambda t}$
we put $N_{0} / 2$ and for t on the right-hand side, we put $t_{1 / 2}$,
$N_{0} / 2=N_{0} e^{-\lambda t_{1 / 2}}$

The N_{0} on each side cancels, leaving:
$1 / 2=e^{-\lambda t_{1 / 2}}$

Now take the reciprocal of each side of the equation:
$2=e^{\lambda t_{1 / 2}}$

Finally take the natural log of each side. The natural log is by definition the function that undoes the exponential:
$\ln 2=\lambda t_{1 / 2}$

We have Reed's equation 2.2:
$\lambda=\frac{\ln 2}{t_{1 / 2}}$

1. Using $R(t)=-\lambda N(t)$ and $\lambda=\frac{\ln 2}{t_{1 / 2}}$
(a) Convert 138 days to seconds.
(b) If you start off with an Avogadro's number of Polonium-210 atoms ($N_{A} \approx 6.02 \cdot 10^{23}$) and the half life of Polonium-210 is $t_{1 / 2}=138$ days , what number of atoms will be decaying per second.
(c) A Curie (abbreviated Ci) is $3.7 \cdot 10^{10}$ decays / second. Convert your answer in (b) to Ci .

2. Alpha Decay

Polonium-210 alpha decays. The reaction is:
${ }_{84}^{210} \mathrm{Po} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{Z}^{A} \mathrm{X}$
(a) What must A and Z be?
(b) Use the Table of Isotopic Masses and Natural Abundances you have. What element has the Z you found in (a)?

3. β^{-}and β^{+}Decay

(a) Suppose Polonium-210 did a β^{-}decay. Consult Fig. 2.12 to find out what the N and Z value of the resulting nucleus would be. (N is the number of neutrons and $N=A-Z$.)

$$
{ }_{84}^{210} \mathrm{Po} \rightarrow \mathrm{e}^{-}+{ }_{Z}^{A} \mathrm{X}
$$

In addition to reporting N and Z of the new nucleus, what is the A value of the new nucleus?
(b) Suppose Polonium-210 did a β^{+}decay. Consult Fig. 2.12 to find out what the N and Z value of the resulting nucleus would be.

$$
{ }_{84}^{210} \mathrm{Po} \rightarrow e^{+}+{ }_{Z}^{A} \mathrm{X}
$$

In addition to reporting N and Z of the new nucleus, what is the A value of the new nucleus?

4. Energy Released in Fission

Returning to the actual Polonium-210 alpha decay that you found in Problem 2:

$$
{ }_{84}^{210} \mathrm{Po} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{Z}^{A} \mathrm{X}
$$

Look up the mass of each atom involved in your the Table of Isotopic Masses and Natural Abundances. Actually, Polonium-210 isn't stable enough to be in our table, so I'll just tell you that it has mass 209.982874u.
(a) What is the total mass on the left-hand side. This is super-easy! There is only one reactant on the lefthand side.
(b) What is the total mass on the right-hand side. Keep all six decimal places.
(c) What is the difference?

DISCUSSION: Notice that when you compute the difference, you are down to four significant figures even though started with seven significant figures for Helium-4 and nine significant figures for the other nuclei.

I give a bunch of exact values below. If you want to round the result of any step to four significant figures, you can.
(d) Using 1amu (or 1 u) $=1.66054 \times 10^{-27} \mathrm{~kg}$ and multiply by c^{2} to convert what you got in (a) to Joules. For some additional accuracy, let's use $c=2.99792458 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ instead of $c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$.
(e) Using $1 \mathrm{eV}=1.602176634 \cdot 10^{-19} \mathrm{~J}$, convert what you got in (d) to eV .

DISCUSSION: Almost comically, since 1993 that value of $c=2.99792458 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ is exact, just like since 2019 the value of $N_{A}=6.02214076 \cdot 10^{23}$ and the value of $1 \mathrm{eV}=1.602176634 \cdot 10^{-19} \mathrm{~J}$ are both exact. It would be a fun detour to discuss why all these values are now exact values.
(f) Using 1 MeV is $10^{6} \mathrm{eV}$, convert what you got in (e) to MeV .
(g) Steps (d), (e), and (f), are just conversions that always involve the same steps, and it gets tiring doing them over and over again. At the middle of p. 34 , Reed quotes the conversion factor for atomic mass units to MeV. Use that conversion factor to go straight from (c) to (f) in a single step. You should get something very close.

