
Manhattan Project — Assignment 3 — Half Lives and Decays
Let’s recap the equations on p. 26 before doing any problems.

Decay Rate Derivation

I derived the equation for decay rate without using any calculus. I had to use some properties of the 
exponential though. One of the properties was this one that  you may or may not be familiar with:

ex = 1 + x + x2
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If you are curious and know factorials, the denominators are 0!=1, 1!=1, 2!=2, 3!=6, etc. I will use the 
above formula to make an approximation below. Another property of the exponential that I used is:

ex+y = ex ey

That’s actually true whatever base is being exponentiated. For example:

10x+y = 10x ·10y

Finally, I used e0 = 1. At least I'm not using any calculus!

So we start with the claim that 

N(t) =N0 e-λt

describes radioactive decay. If you have N0 atoms at time t = 0, this formula is the one that tells you 
how much you have at any later time.So it certainly tells you how much you have at both time t and 
time t + Δt where Δt is a small amount of time. We have:

N(t + Δt) =N0 e-λ(t+Δt) =N0 e-λt e-λΔt =N(t) e-λΔt =N(t)1-λΔt + (λΔt)2
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Here comes the tricky part! If λΔt is small (think of something like 0.01), then every term in the infinite 
series is 0.01 times as small as the previous one. Let's neglect all but the first two!

N(t + Δt) =N(t)[1 - λΔt] =N(t) - λΔtN(t)

Rearrange:

N(t + Δt) -N(t) = -λΔtN(t)

Rearrange more:

N(t+Δt)-N(t)
Δt = -λN(t)

What we have on the left side is what Reed calls R(t) in equation 2.3. It is the rate that the number of 
particles is changing. The right-hand-side of the equation has a minus sign because the number of 
particles is decreasing. Let's summarize before we move on:

R(t) = -λN(t)
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Relationship Between λ and t1/2
There is another thing we derived in class that I want to re-derive here: the relationship between λ and 
t1/2.

t1/2 is the time at which you have half as many particles. So on the left-hand side of,

N(t) =N0 e-λt

we put N0 /2 and for t on the right-hand side, we put t1/2,

N0 /2 =N0 e-λt12

The N0 on each side cancels, leaving:

1 /2 = e-λt1/2

Now take the reciprocal of each side of the equation:

2 = eλt1/2

Finally take the natural log of each side. The natural log is by definition the function that undoes the 
exponential:

ln2 = λt1/2

We have Reed’s equation 2.2:

λ = ln2
t1/2

1. Using R(t) = -λN(t) and λ = ln2
t12

2     Assignment03.nb



1. Using R(t) = -λN(t) and λ = ln2
t12

(a) Convert 138 days to seconds.

(b) If you start off with an Avogadro’s number of Polonium-210 atoms NA ≈ 6.02 ·1023) and the half life 

of Polonium-210 is t1/2 = 138 days , what number of atoms will be decaying per second.

(c) A Curie (abbreviated Ci) is 3.7 ·1010 decays / second. Convert your answer in (b) to Ci.

2. Alpha Decay

Polonium-210 alpha decays. The reaction is:

84
210 Po → 2

4 He+ Z
A X

(a) What must A and Z be?

(b) Use the Table of Isotopic Masses and Natural Abundances you have. What element has the Z you 
found in (a)?

3. β- and β+ Decay

(a) Suppose Polonium-210 did a β- decay. Consult Fig. 2.12 to find out what the N and Z value of the 
resulting nucleus would be. (N is the number of neutrons and N = A - Z.)

84
210 Po → e- + Z

A X

In addition to reporting N and Z of the new nucleus, what is the A value of the new nucleus?

(b) Suppose Polonium-210 did a β+ decay. Consult Fig. 2.12 to find out what the N and Z value of the 
resulting nucleus would be.

84
210 Po → e+ + Z

A X

In addition to reporting N and Z of the new nucleus, what is the A value of the new nucleus?
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4. Energy Released in Fission

Returning to the actual Polonium-210 alpha decay that you found in Problem 2:

84
210 Po → 2

4 He+ Z
A X

Look up the mass of each atom involved in your the Table of Isotopic Masses and Natural Abundances. 
Actually, Polonium-210 isn’t stable enough to be in our table, so I’ll just tell you that it has mass 
209.982874u.

(a) What is the total mass on the left-hand side. This is super-easy! There is only one reactant on the left-
hand side.

(b) What is the total mass on the right-hand side. Keep all six decimal places.

(c) What is the difference?

DISCUSSION: Notice that when you compute the difference, you are down to four significant figures 
even though started with seven significant figures for Helium-4 and nine significant figures for the other 
nuclei.

I give a bunch of exact values below. If you want to round the result of any step to four significant 
figures, you can.

(d) Using 1amu (or 1u) = 1.66054 x10-27kg  and multiply by c2 to convert what you got in (a) to Joules. 
For some additional accuracy, let’s use c = 2.99792458 ·108 m /s instead of c = 3 ·108 m /s.

(e) Using 1eV = 1.602176634 ·10-19J, convert what you got in (d) to eV.

DISCUSSION: Almost comically, since 1993 that value of c = 2.99792458 ·108 m /s is exact, just like since 
2019 the value of  NA= 6.02214076 ·1023 and the value of 1eV = 1.602176634 ·10-19 J are both exact. It 
would be a fun detour to discuss why all these values are now exact values. 

(f) Using 1MeV is 106eV, convert what you got in (e) to MeV.

(g) Steps (d), (e), and (f), are just conversions that always involve the same steps, and it gets tiring doing 
them over and over again. At the middle of p. 34, Reed quotes the conversion factor for atomic mass 
units to MeV. Use that conversion factor to go straight from (c) to (f) in a single step. You should get 
something very close.
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