Manhattan Project-Assignment S-Solution

1. The Radius of the Uranium Nucleus

The empirical formula on $p .50$ is radius $\sim a_{0} A^{1 / 3}$ where $a_{0} \sim 1.2 \times 10^{-15} \mathrm{~m}$ for U-238, $A=238$. Itting that into a calculator, radius $\sim 1.2 \mathrm{fm} \times 238^{1 / \mathrm{s}}=7.4 \mathrm{fm}$
I meant to also ask, what cross-section does that give?

$$
\begin{aligned}
&\text { cross -section (naively })=\text { area of disk }=\pi r^{2} \\
&=\pi \cdot(1.4 \mathrm{fm})^{2}=173.7 \mathrm{fm}^{2}=1.1 \text { barns }
\end{aligned}
$$

2. The Surface Area of the Uranium Nucleus
(a) $A=4 \pi R^{2}=4 \pi(7.4 f m)^{2}=688 \mathrm{fm}^{2}$
(b) $V=\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi(7.4 \mathrm{fm})^{3}=1697 \mathrm{fm}^{3}$
3. Reed Problem 3.3 p. 120

$$
\begin{aligned}
& U_{\text {self }}=\underbrace{\frac{3 e^{2}}{20 \pi \epsilon_{0} a_{0}}} \frac{Z^{2}}{A^{1 / 3}} \\
& \text { This mess is } \frac{3}{5} \cdot f \frac{e^{2}}{4 \pi e_{0} a_{0}} \\
& \text { and that mess } \\
& \text { was given as } \\
& 1.2 \text { MeV back on } \\
& \text { p. } 50 \\
& \frac{3}{5} 1.2 \mathrm{MeV}=\frac{3.6}{5} \mathrm{MeV}=0.72 \mathrm{MeV}
\end{aligned}
$$

3 again
If you don't like that I used Eq. 2.28 on p. 50 , then you can do it all
from scratch: from scratch:

$$
\begin{aligned}
& e=1.6 \times 10^{-19} \mathrm{C} \\
& a_{0}=1.2 \times 10^{-15} \mathrm{~m} \\
& \epsilon_{0}=8.85 \times 10^{-12} \mathrm{c}^{2} / \mathrm{Nm}^{2}
\end{aligned}
$$

And the conversion factor from J Jules to NoV is

$$
\begin{aligned}
& 1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J} \\
& \text { So } \frac{e^{2}}{4 \pi \epsilon_{0} a_{0}}=\frac{\left(1.6 \times 10^{-19} \&\right)^{2}}{4 \cdot \pi \cdot 8.85 \times \frac{10^{-12} e^{2}}{\sim m^{2}} \cdot 1.2 \times 10^{-15 m a}} \\
& =\underbrace{10^{-38+12+15}}_{10^{-11}} \cdot \underbrace{\frac{1.6}{4-\pi \cdot 8.85 \cdot 12}}_{0.019} \underbrace{\mathrm{Nm}}_{\mathrm{J}}
\end{aligned}
$$

Ok, but this is usually quoted in Mel, not Joules, so

$$
\begin{aligned}
\frac{e^{2}}{4 \pi \sigma_{0} a_{0}} & =0.019 \times 10^{-11 J} \times \frac{1 \mathrm{MeV}}{1.6 \times 10^{-13} \mathrm{~J}} \\
& =0.012 \times 10^{2} \mathrm{MeV}=1.2 \mathrm{MeV}
\end{aligned}
$$

Then

$$
\begin{aligned}
U_{\text {self }} & =\frac{3}{5} \frac{e^{2}}{4 \pi c_{0} a_{0}} \frac{z^{2}}{A^{1 / 3}} \\
& =\frac{3}{5} \times 1.2 \mathrm{NeV} \frac{z^{z}}{A^{1 / 3}} \\
& =0.72 \mathrm{MeV} \frac{z^{2}}{1^{1 / 3}}
\end{aligned}
$$

4. Reed Problem 3.4 p. 120

Before there is just one sphere with z patois and A nredeons
Its sofferengy is
$U_{\text {self, }, \text { Lore }}=\frac{3 e}{20 \pi \epsilon_{0} a_{0}} \frac{z^{2}}{A^{13}}$
After there are two spheres with $z / 2$ protons and $A / 2$ nucleons

$$
U_{\text {self, after }}=2 \cdot \frac{3 e^{2}}{20 \pi \epsilon_{0} a_{0}} \frac{(Z / 2)^{2}}{(A / 2)^{1 / 3}}
$$

Also after, we have the Coulomb barrier of the two touching spheres.

$$
U_{\text {Colon } 6}=\frac{e^{z}}{4 \pi \epsilon_{0} a_{0}} \frac{(z / 2)^{z}}{(A / 2)^{2 / 3}+(A / 2)^{1 / 3}}
$$

The wile point is that the

$$
U_{\text {self, before }}>U_{\text {self, after }}+U_{\text {coubmb }}
$$

and this energy is available to become (rident) Kinetic energy. Let's calculate the difference. fanticumy $=K E$
4. (CONT'0)
 that $a_{c}=\frac{3 c 2}{20 \pi \sigma_{0} a_{0}}$

$$
=a_{c}\left(1-\frac{1 \pi}{6}(1 /)^{5 / 3}\right)^{\frac{y^{2}}{13}}
$$

$$
=a_{c}\left(1-\frac{1 \pi}{12}(1 / 2)^{2 / 3}\right) \frac{e^{2}}{1 / 10}
$$

5. $10016=45.3 \mathrm{~kg}, \rho=19 c_{6,3}=18000 \frac{\mathrm{~kg}}{\mathrm{~m} \mathrm{~m}^{3}}$

(c) Convert to kt of conventional explosives
using $\quad 1 \mathrm{kt}=4.2 \times 10^{12} \mathrm{~J} \quad$ Really

