Manhattan Project-ProblemSet 6 -Solution

1. Reed Problem 5.1, p. 235 -Air-Cooled Reactor Operating at power I in a time Δt the reactor produces $Q=P \Delta t$ of heat.
The volume of air flowing through the reactor in this same time, Δt, is
$V=f \Delta t$ where f is the flow rate. $V=f \Delta t$ where f is the flow rate.
(Don't confuse Δt, a time, with ΔT, a temperature rise.)
Reed gives us a thermodynamic formula:

$$
Q=m c \Delta T
$$

So,

$$
\text { Pst }=\rho f \Delta t c \Delta T
$$

The time interval cancels out and you are only left with rates (power, is a rate and air flow, f, is a rate). Solve

$$
\begin{aligned}
& \text { for } \triangle T \text { : } \\
& \Delta T=\frac{P}{\rho f c}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1000}{14.16} \mathrm{k}=70.6 \mathrm{~K}
\end{aligned}
$$

A change of 1 K is the same as $1{ }^{\circ} \mathrm{C}$ which is $\frac{9}{5}$ of so that is $127^{\circ} \mathrm{F}$. If it started ${ }^{5}$ at room temp, ($72^{\circ} \mathrm{F}$) it comes, out at about $200^{\circ} \mathrm{F}$. That is a very hot and large blowdryer.
2. Reed Problem 5.z- Uranium Load

We need the mass of N channels. Each channel is is a cylinder with mass $\quad m_{\text {channel }}=\rho V=\rho \pi r^{2} L$
So the total mass is

How about 106 metric tons as a useful way of reporting the answer.
3. Reed Problem 5.3-Graphite Bricks

$$
\begin{array}{ll}
m_{\text {total }}=N m_{\text {brick }} & N=40000 \\
m_{\text {brick }}=\rho V_{\text {brick }} & \rho=2.15 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \\
V_{\text {brick }}=w \cdot w \cdot l & w=4.125 \text { inches. } \frac{2.54 \mathrm{~cm}}{\text { inch }}=10.48 \mathrm{~cm} \\
\text { So } & l=16 \text { inches. } \frac{.54 \mathrm{~cm}}{\operatorname{sch}}=41.91 \mathrm{~cm}
\end{array}
$$

$$
\begin{aligned}
& m_{\text {total }}=N \rho W^{2} L=40,000 \cdot \frac{2.15 \mathrm{~g}}{\mathrm{~cm}^{3}} \cdot(10.48 \mathrm{~cm})^{2} \cdot 41.91 \mathrm{~cm} \\
& =395857318 \mathrm{~g} \stackrel{\text { sill gan } 0}{=} 396 \text { metric tons of graphite }
\end{aligned}
$$

4. Reed Problem 5.4, p. 235 Uranium Enrichment
(a) Build a table

Enrichment Round	Concentration
0	0.00120
1	0.00792
2	0.00871
3	0.00958
4	0.01054
5	0.01160
6	0.01276

(b) The idea of building the table was (i) to start seeing. how painfully slow repeated enrichment would be, and (ii) to see the pattern:

0	f_{0}
1	$r f_{0}$
2	$r^{2} f_{0}$
3	$r^{3} f_{0}$
\vdots	$r^{i} f_{0}$

(c) If you see the pattern

$$
f=r^{i} f_{0} \quad \text { or } \quad \frac{f}{f_{0}}=r^{i}
$$

Now comes the fancy algebra. Take
$\log _{10}$ of both sides, and use

$$
\begin{aligned}
& \log _{10} r^{i}=i \log _{10} r \\
& \log _{10} \frac{f}{f_{0}}=i \log _{10} r \quad \text { or } \quad i=\frac{\log _{10} \frac{f}{t_{0}}}{\log _{10} r}
\end{aligned}
$$

To find the needed number of enrichment rounds, put in the needed final concentration:

$$
f_{\text {find } 1}=0.9
$$

$$
\begin{aligned}
& n=\frac{\log _{10} \frac{f_{\text {find }}}{f_{0}}}{\log _{10} r} \quad\left[\begin{array}{l}
f_{\text {final }} \\
f_{0}=0.0072 \\
r=1.1
\end{array}\right. \\
&=\frac{\log _{10} \frac{0.9}{0.072}}{\log _{10} 1.1}=50.65=51 \text { enrichment } \\
& \text { rounds }
\end{aligned}
$$

Note: It dost matter what logarithm base you use as long as ya are consistent. You could use the natural $\log (l x)$ if you preferred.
Another note: You can even use $\log _{11} x$
if your calculator supports logarithms if your calculator supports logarithms with arbitrary base. In That case, because $\log _{1} 1.1=1$, the denominator e in tog the expression for

