Photon-Proton Collision
We are going to use energy conservation and momentum conservation to show that a photon must have 54 MeV (in paraffin) out with 5.1 MeV of kinetic energy. Because only $11.6+5.3$
$\approx 20 \mathrm{MeV}$ is available, whatever the \approx oMer is available, whatever the mystery radiation is in fig. 2.23,
cannot be a photon (o) you prefer that terminology). What is special about the photon, and what is going to rule if out, is that the photon is massless. In 1905 , Einstein had published the theory/ of Special Relativity. We
usually see $E=m c^{2}$ as being the usually see $E=m c^{2}$ as being the
most famous consequence, but that most famous consequence, but test. The more general statement is

$$
\begin{gathered}
E=\sqrt{\rho_{R_{p}^{2} c^{2}+m^{2} c^{4}}} \text { is the } n
\end{gathered}
$$

for a particle at rest, the momentum is zero, and if you put $p=0$ in

$$
E=\sqrt{p^{2} c^{2}+m^{2} c t}
$$

you get back $E=m c^{2}$, which says that the mass of a partide at rest can be converted to energy.
for collision we are studying, we need the foll equation, and we are four times!
First let's apply it to the proton,
sitting still, sitting still, waiting to be hit. we will use the subscript is for initial, proton has $P_{p, i}=0$

So

$$
E_{p, i}=x_{p} c^{2}
$$

After the collision, the proton satisfies

$$
\begin{aligned}
& E_{p, f}=\sqrt{P_{p}^{2} c^{2}+m_{p}^{2} c^{4}} \\
& =\underbrace{\sqrt{P_{p}^{2}+c^{2}+m_{p}^{2} c^{4}}-m_{p}^{2} c^{2}}+m_{p}^{2} c^{2} \text {) } \\
& \begin{array}{l}
\text { called } K_{p}, f \text {, and it is } \\
\text { what Chadwick measured to be } \\
\text { as high as s.7MeV }
\end{array}
\end{aligned}
$$

Now we are going to work on the photon's contributions to energy and momentum conservation. A photon also obeys $E=\sqrt{P^{2} c^{2}+m^{2} c^{4}}$ but a photon is massless. So this
simplifies to $E=\phi \subset$ (almost')

The photon is initially going
to the right in figure $z=2$ to the right in figure $\begin{aligned} & \text { z. } 23 . \\ & \text { kick }\end{aligned}$ to give proton git needs to bounce back (to the left). Because we hare photons going both right and left'reful when we simplify $\sqrt{p^{2} c^{2}}$
It actually simplifies to $\mid \mathrm{pc} /$. So we have

$$
E_{\gamma, i}=\left|P_{\gamma, i} c\right| \text { and } E_{\gamma, f}=\left|p_{\gamma, f} c\right|
$$

and the absolute value signs say that a photon has positive energy whether or not its momentum is positive or
negative. It is pretty standard to make the positive direction to the right, and so Pry $i>0$. Mean chile, we have argued that for the most kick Pr if is to the left, so $p_{\gamma}, f<0$.
Now use those facts to simplify:

Or, $P_{r, i}=E_{\gamma, i} / c$ and $P_{r, f}=-E_{f, f} / c$

We have one more bit of work to do before we can start using energy and momentum conservation.
Go back to $K_{p, f}$.

$$
\begin{gathered}
K_{p, f}=\sqrt{p_{p, f}^{2} c^{2}+m_{p}^{2} c^{4}}-m_{p} c^{2} \\
=m_{p} c^{2}\left(\sqrt{\left.1+\frac{p_{p}^{2}+c^{2}}{m_{p}^{2}}-1\right)}\right.
\end{gathered}
$$

In class, I claimed that if x is much less than 1 , that
$\sqrt{1+x}-1 \approx \frac{1}{2} x$
We could take the detour to further motivate the claim, but you can test it with a calculator. Even for x as large as 0.3 it works pretty and the right-hand side is 0.5 .
So if $P_{p, f} \subset \ll m_{p} C^{2}$
(which amount to assuming $\dot{v}_{p,},{ }^{*}<$) then

$$
k_{p, f} \approx m_{p} c^{2} \cdot \frac{1}{2} \frac{p_{p}^{2} f c^{2}}{u_{p}^{2} c^{4}}=\frac{1}{2} \frac{p_{p, f}^{2}}{m_{p}}
$$

We will need to rearrange this equation to use it: $\quad p_{p, f} f=\sqrt{2 m k_{p, f}}$

Home stretch. Momentum conservation says:

Or, $\epsilon_{r, i}=-E_{\gamma, f}+\sqrt{2 m_{p} c^{2} k_{p, f}} \quad$ (*)
Meanwhile, energy conservation says

$$
E_{\gamma, i}+m_{p} p^{2}=E_{\gamma, f}+m_{p} p^{2}+K_{p, f}
$$

Or,

$$
E_{\gamma_{1, i}}=-E_{\gamma, f}+K_{p, f} \quad(* *)
$$

Add the two equations (k) and ($* *$), and divide by 2 , and get:

$$
E_{\gamma, i}=\frac{K_{p, f}+\sqrt{2 m_{p} c^{2} K_{p, f}}}{2}
$$

This is Reed's equation (2.34). It may have taken a bunch of world to get it but all the concepts, are fundamentally important physics: $E=p c$ for a photon, $E=m c^{2} P k$ and $K=\frac{D^{2}}{2 m}$ for a non-relativistic proton
plus the even more fundamental ideas of momentum conservation and energy conservation.
Anyway, we have the equation and now we stick in

$$
\begin{aligned}
& K_{p, f}=5.7 \mathrm{MeV} \\
& M_{p} c^{2}=938 \mathrm{MeV}
\end{aligned}
$$

and we get

$$
E_{r, i}=57.4 \mathrm{MeV}
$$

Impossible! Only 20 MeV was
available available to make that photon.
In the next problem set, well see how supposing the see stance of supposing neutron existence the reaction (2.33) plausible
makes ne
except now it is: except now it is:

$$
{ }_{2}^{4} \mathrm{He}+{ }_{4}^{9} \mathrm{Be} \rightarrow{ }_{6}^{12} \mathrm{C}+{ }_{0}^{1} \mathrm{n}
$$

neutron instead of

