
The Coulomb Barrier
This is a more understandable discussion of what is on p. 50 of Reed

Coulomb’s Law

Coulomb’s Law says the strength of the force between two charges is

F = 1
4 π ϵo

q1 q2

r2

There are so many things to say about this simple formula!

1. It looks a lot like Newton’s Universal Theory of Gravitation, except it involves charges instead of 
masses. Newton’s Universal Theory of Gravitation says:

F = G m1 m2

r2

2. Gravity always causes masses to attract. But Coulomb’s Law is different. Charges can be positive or 
negative. If both are positive, they repel. If both are negative, they repel. If one is positive, and one is 
negative, only then do they attract. That’s why there are absolute value signs around q1 and q2 in 
Coulomb’s Law, and you have to remember that “opposites attract” to get the direction of force right. 

3. Because of 2, you can see that the negative electron is attracted to the positive proton, and you can 
see why there might be stable orbits of the electron around the proton, and indeed, that is the picture 
we have of Hydrogen and all atoms.

4. Both Coulomb’s Law and Newton’s Law have a 1
r2  factor in them. If you imagine charges as being 

little spheres, like teensy planets, then the r in 1
r2  refers to the distance between the centers of the 

spheres.

5. The 1
r2  factor means the force gets stronger and stronger as the charges get closer together.

6. Because of 5, you can see that there might be a great barrier in getting a proton near a nucleus, or a 
nucleus near a nucleus. After all, nuclei are positively charged, and the proton is positively charged, 
and so these objects repel each other, and the repulsion gets larger and larger as they get closer and 
closer.



The Coulomb Potential

In order to be quantitative about the barrier discussed in 6, we need to introduce the the Coulomb 
potential. What was described on the previous page was the Coulomb force. It measures how hard the 
Coulomb force pushes. The Coulomb potential measures how much energy it takes to get two charges 
near each other.

We aren’t using calculus in this class. With calculus, it is easy to get that the potential corresponding to 
a 1

r2  force goes as 1
r

. E.g., the Coulomb potential is

E = 1
4 π ϵo

q1 q2

r

Notice the absolute value signs around the charges are gone. This says there is positive energy required 
to bring charges together if they are like charges, and energy is released bringing charges together if 
they are opposite.

I haven’t said anything about the 1
4 π ϵo

 out front. Don’t be intimidated. ϵ0 is just a constant of nature 

whose value is about ϵ0 = 8.85×10-12 C2 (Jm). Because it always shows up in the combination 1
4π ϵ0

we 

usually just write:

1
4π ϵ0

= 8.99×109 J m
C2

One more thing: a Joule-meter is the same as a Newton - meter2, and while I am at it, I might as well 
round 8.99 to 9, so the way I am used to seeing 1

4πϵ0
 written is:

1
4π ϵ0

= 9×109 N m2

C2

To remember why a Newton-meter is a Joule, go back to the tangerine-dropping example we did on 
the first day.

Getting Reed’s Equation 2.26

If we assume that we have two nuclei colliding, then q1 = Z1 e and q2 = Z2 e, where e is the charge on the 
proton and Z as usual represents the number of protons. If we assume nucleus 1 has radius r1 and 
nucleus 2 has radius r2 then when the two spheres are just touching, their centers will be separated by 
r = r1 + r2. So we put those three facts into:

E = 1
4 π ϵo

q1 q2

r
= 1

4 π ϵo

(Z1 e) (Z2 e)
r1+r2

Reed also introduces the empirical assumption (Equation 2.25) that the volume of a nucleus is propor-
tional to its A value (the number of nucleons which means the number of protons plus neutrons).

So we have

Volume of nucleus = 4
3
π a0

3 A = 4
3
π a0 A1/33

a0 A1/3 has the interpretation of being the radius of the nucleus. The value of a0 that makes this empiri-
cal formula work is a0 = 1.2×10-15 m.

So we have r1 = a0 A1
1/3 and r2 = a0 A2

1/3 and we put that into 

E = 1
4 π ϵo

(Z1 e) (Z2 e)
r1+r2

= 1
4 π ϵo

(Z1 e) (Z2 e)
a0 A1

1/3+a0 A2
1/3

and simplify and we get exactly what Reed got in Equation 2.26:

E = the Coulomb barrier = e2

4 π ϵo a0

Z1 Z2

A1
1/3+A2

1/3

This is how much energy it takes to get two nuclei to touch.

The mess out front is is something that can be calculated once and for all:

e2

4 π ϵo a0
= 1.6022×10-15 J = 1.2 MeV
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The relationship between a 1
r2  force and a 1

r  potential

Although we aren’t using calculus in this class, it would be awfully nice to see why a 1
r2  force creates a 1

r
 

potential. Here is a graph of a force that is 1 N m2

r2 :

In[6]:= Plot
1

r2
, {r, -3, 0}, PlotRange → {{-3.0, 0.0}, {0.0, 6}}, GridLines → {Range[-3.0, 0.0, 0.1], Range[0.0, 6, 0.1]}, AspectRatio →

6

3


Out[6]=

On the horizontal axis is distance in meters, counting down from -∞ to 0. On the vertical axis is the 
strength of the force in Newtons. Obviously this function is hard to graph. The force gets enormously 
large as you get closer and closer to zero distance. It never goes to zero no matter how far to the left we 
plotted it. That just means the force gets weaker and weaker but never vanishes going to the left.

Now we want to get the potential. Energy is force times distance. Although the force is constantly 
changing, we can estimate the force times the distance, by counting up the little squares. Each square 
is 0.1m across and 0.1N high. So each square represents 0.01J of energy. The amount of energy 
required to bring the charge in from -∞ is cumulative. Fill in the following table by counting squares.
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is 0.1m across and 0.1N high. So each square represents 0.01J of energy. The amount of energy 
required to bring the charge in from -∞ is cumulative. Fill in the following table by counting squares.

In[16]:= TableForm[Table[If[d ⩵ -3.5, {"distance", "squares", "squares x 0.01 (cumulative)"},
{d, " ______", " _____"}], {d, -3.5, -0.5, 0.5}]]

Out[16]//TableForm=

distance squares squares x 0.01 (cumulative)
-3. ______ _____
-2.5 ______ _____
-2. ______ _____
-1.5 ______ _____
-1. ______ _____
-0.5 ______ _____

I will tell you the first entry in the table which results in counting up all the squares from -∞ to -3.0. It is 
33.

Now you estimate the number of squares between -3.0 and -2.5, multiply by 0.01 and add it to 0.33.

You will have to do your best estimate partial squares.

Finally, after we have done all the counting and cumulative adding, we will add a fourth column to the 
table, and hopefully a pleasant surprise will happen.
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