Mathematical Analysis Final

June 17, 2021. NONE OF THESE IS MEANT TO BE VERY LONG. If any problem seems very long, just move on to the next one.

1. Limits (6 pts)

Use the definition of the limit - a $\delta-\epsilon$ proof starting with the limits poem - to show that:
$\lim _{x \rightarrow 1} x^{1 / 3}=1$
HINT: After writing down what you are trying to prove, multiply $x^{1 / 3}-1$ by $\frac{x^{2 / 3}+x^{1 / 3}+1}{x^{2 / 3}+x^{1 / 3}+1}$ and simplify.

2. Bounds (6 pts)

For the following three functions on the domain (0,1] Answer each of: (i) does the function have a lower bound. If yes, (ii) what is the greatest lower bound, and (iii) does the function take on its greatest lower bound in this domain?
(a) $\frac{1}{x}$
(b) $\sin \frac{1}{x}$
(c) $-x^{2}$

3. Consequences of the Three Hard Theorems (2 pts)

The first of the three hard theorems announced in Chapter 7
was:

THEOREM 1 If g is continuous on [a,b] and $g(a)<0<g(b)$, then there is some x in $[a, b]$ such that $g(x)=0$.

Show using this theorem,
That $x^{179}-\sin ^{13} x=44$ has at least one solution.

4. Proofs Involving the Three Hard Theorems (3 pts)

Consider again the first of the three hard theo-
rems:
THEOREM 1 If g is continuous on [a,b] and $g(a)<0<g(b)$, then there is some x in $[a, b]$ such that $g(x)=0$.

This theorem begs to be generalized, and indeed, the first theorem proved in Chapter 7 was:
THEOREM 4 If f is continuous on $[a, b]$ and $f(a)<c<f(b)$, then there is some x in [a,b] such that $f(x)=c$.

Prove Theorem 4 from Theorem 1. HINT: Draw g. Draw f. Do your drawings suggest that a $g(x)$ that is related to $f(x)$ to which you can apply Theorem 1, and thereby prove Theorem 4? Your drawings aren't the proof. Your drawings are just to help you realize what $g(x)$ you need to consider.

5. Derivatives (5 pts)

You have found (using the binomial theorem), that if $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$. Surprisingly, even though you only proved this using the binomial theorem for integer n, it is true for all real α : if $f(x)=x^{\alpha}$, then $f^{\prime}(x)=\alpha x^{\alpha-1}$.
(i) Plug $\alpha=1 / 3$ into this formula to get the derivative of $x^{1 / 3}$. (ii) Evaluate what you got in (i) for $x=1$. (iii) Now that you have an answer, show that your answer to (ii) is correct starting from the definition of the derivative:
$f^{\prime}(1) \equiv \lim _{h \rightarrow 0} \frac{(1+h)^{1 / 3}-1}{h}$
HINT: Very much like Problem 1, multiply through by $\frac{(1+h)^{2 / 3}+(1+h)^{1 / 3}+1}{(1+h)^{2 / 3}+(1+h)^{1 / 3}+1}$. Also, you can use any formulas for simplifying limits (like the limit of the sum is the sum of the limits).

6. Complex Numbers (3 pts)

Write $\sqrt{3+4 i}$ in the form $a+b i$.
HINT: Start with $\sqrt{3+4 i}=a+b i$ and square both sides. Then solve for a and b. There are two solutions.

