
Uniform Continuity
For Chapter 8 Appendix, Problem 2, p. 144

2(a) Sums

Prove that the sum of two uniformly continuous function is uniformly continuous.

Since f  is uniformly continuous on A there is a δf  such that for all xand y in A,

f (x) - f (y) < ϵ
2

,

provided that

x - y < δf .

Similarly,

g(x) - g(y) < ϵ
2

,

provided that

x - y < δg

Now choose δ to be the smaller of δf  and δg. Then

f (x) + g(x) - (f (y) + g(y)) ≤ f (x) - f (y) + g(x) - g(y) < ϵ
2
+ ϵ

2
= ϵ

Voila.



2(b) Products

Prove that the product of two uniformly continuous function is uniformly continuous, provided that 
both functions are bounded on the interval in question.

As in 2(a), we will have a δf  and δg. This time choose the ϵ for f  to be ϵ
2N

. E.g., our δf  will be sufficiently 

small such that 

f (x) - f (y) < ϵ
2N

where N is the bound on g. E.g., g(x) < N.

Similarly, choose the ϵ for g to be ϵ
2M

. E.g., our δg will be sufficiently small such that 

g(x) - g(y) < ϵ
2M

where M is the bound on f . E.g., f (x) <M.

Now we consider

f (x) g(x) - f (y) g(y) =
f (x) g(x) - f (y) g(x) + f (y) g(x) - f (y) g(y) ≤ f (x) g(x) - f (y) g(x) + f (y) g(x) - f (y) g(y) =
f (x) - f (y) g(x) + f (y) g(x) - g(y) <

f (x) - f (y)N+Mg(x) - g(y) < ϵ
2N
N+M ϵ

2M
= ϵ

2
+ ϵ

2
= ϵ

Voila.
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Counterexample asked for in 2(c)

The product of two functions that are uniformly continuous may not be uniformly continuous if one of 
them is unbounded. Of course the only way this can happen is if the interval is unbounded, because a 
continuous function on a bounded interval is bounded.

Example: let f (x) = sin x and g(x) = x. Let the interval be [0, ∞). Both f  and g are uniformly continuous 
even though g is unbounded. That’s because g’s slope is constant.

Let’s graph the product:

In [ ] := Plot[{x, -x, xSin[x]}, {x, 0, 18 Pi/ 2}, AspectRatio → 2]
Out[ ]=
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Let’s consider x = 2π  and x = 4π . Let’s consider ϵ = 1. At x = 2π , that means xsin x < 1. Let’s blow up 
that region of the plot:

In [ ] := Plot[xSin[x], {x, 2 Pi - 1, 2 Pi + 1},
PlotRange → {{2 Pi - 1, 2 Pi + 1}, {-1, 1}}, AspectRatio → 1]

Out[ ]=
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Eyeballing the plot, it appears that a δ of about 0.2 will do the job for ϵ=1.

Now let’s make a similar plot but at x = 4π .

In [ ] := Plot[xSin[x], {x, 4 Pi - 1, 4 Pi + 1},
PlotRange → {{4 Pi - 1, 4 Pi + 1}, {-1, 1}}, AspectRatio → 1]

Out[ ]=
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It is clear that the δ of about 0.2 will not do the job because the function is steeper here (twice as steep 
in fact).
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You could do δ of about 0.1, but then if you go out twice as far again, to x = 8π , you’ll need a δ of about 
0.05 because the function is twice again as steep:

In [ ] := Plot[xSin[x], {x, 8 Pi - 1, 8 Pi + 1},
PlotRange → {{8 Pi - 1, 8 Pi + 1}, {-1, 1}}, AspectRatio → 1]

Out[ ]=
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2(d) Composition

Here again is the statement of Part 
(d):

The proof of this is going to have to go a lot like the proof of Theorem 2 of Chapter 6 on p. 115, which 
starts out like this:

Notice that the roles of f  and g have been interchanged.

If you look at the rest of the proof of Theorem 2 of Chapter 6, you’ll see that it indeed has almost the 
exactly the same outline as our proof that follows:

PROOF

Because g is uniformly continuous on B we know that for f (x) and f (y) (which by assumption are in B 
provided x and y are in A) that there is a δg such that g(f (x)) - g(f (y)) < ϵ provided that 
f (x) - f (y) < δg.

But we also know that since f  is uniformly continuous on A that there is a δf  such that f (x) - f (y) < δg 
provided that x - y < δf . (δg is just playing the role of the ϵ in the definition of uniform continuity for 
f .)

To summarize: the ϵ requires a certain δg, and this δg transitively requires a certain δf . This δf  is the δ 
we need to make

g(f (x)) - g(f (y)) < ϵ

for any x, y in A with x - y < δ .

NOTHING NEW, BUT ANOTHER PROOF/RESTATEMENT

We want to show that given any ϵ, there is a δ that keeps g(f (x)) - g(f (y)) < ϵ.

So we START with this epsilon, and use the assumption that g is uniformly continuous. That tells us 
that there is a δg. Now that we know what that δg has to be, we use the assumption that f  is uniformly 
continuous. That tells us there is a δf  that keeps  f (x) - f (y) < δg. This δf  is what we need to use as our 
δ.
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