Hath Analysis Problem Set 1 2021-03-18
Problem 5 chapter 1.
5 (i) $a<b$ weans $b-a>0$ (or $b-a$ is in p)
$c<d$ means $d-c>0$ (or $d-c$ is in P)
By (PII) (closure under addition of P)

$$
\begin{aligned}
& \text { but } \phi-(a+c)>0 \\
& \text { carangements }
\end{aligned}
$$

$i \Rightarrow a+c<b+b$
by standard vearmanements
an mons $b-a$ is in P
and it is equivalent to we want to show
But standard rearrangements show that
$-a-(-b)=b-a$ which by assumption is in P.
(iii) $c>d$ means dec. We also know from part (ii) that $d<c$ is equivalent to $-c<-d$. So this is from here on the same as part (i), except c is $-c$ and d is $-d$.
(iv) $a<b$ means $b-a$ is in P. Now P is closed under multiplication and c is in P, so $c \cdot(b-a)$ is in p, and from that you get $b c-a c$ is in P which means bcrac. (v) $a<b$ means $b-a>0$ 。 $c<0 \Rightarrow-c>0$. Closure under multiplication of P means $(b-a)(-c)>0$. Rearrange and get
$a c-b c>0 \Rightarrow b c<a c$
(vi) If $a>1$ then $a-1$ is in p. $a^{2}-a=a(a-1)$ is in P by closure of p under multiplication. So $a<a^{2}$.

5 (vii) If $0<a<1$, we know that a is in. P $a<1 . \quad a<1$ means $1 \ldots a$ is in P. By, closure $a(1-a)=a-a^{2}$ is in $P \Rightarrow a^{2}<a_{0}$ (viii) rifler or a is 2 ?Oo it is trivial. So we have to areal with the case where a and c are both nonzero.

$$
0<a<b \text { and } 0<c<d
$$

we are trying to show that $a c<b d$. Ire., we are trying to show $b d-a c$ is in p. $b d-a c=b d-b c+b c-a c=b \cdot(d-c)+(b-a) \cdot c$

These are four positive thins?
so by closure under addition and multiplication we have that bd-ac is in P.
5(ix) Let c be a and d be b.
By (viii) we had $a c<b d$ which becomes $a^{2}<b^{2}$
$5(x)$ By trichotomy or $\begin{array}{r}a<b \\ a>b\end{array}$
Assume $a=b$. Then $a^{2}=b^{2}$ in violation of $a^{2}<b^{2}$.
Assume $a>b$. Then by (ix) backwards $b^{2}<a^{2}$ in violation again of $a^{2}<b^{2}$. So that leaves
$a<b \leftarrow$ the only possibility of the trichotomy's that we have not ruled out.
(s (a) Blog $x_{t}=\frac{-1+\sqrt{b^{2}+1}}{2}$ in to $x^{2}+b x+c$.

$$
\begin{aligned}
& \left(\frac{-b+\sqrt{b^{2}-4 c}}{2}\right)^{2}+b\left(\frac{-b+\sqrt{b^{2}-\sqrt{4}}}{2}\right)+c
\end{aligned}
$$

$$
\begin{aligned}
& =0 \quad \sqrt{ } \quad \text { Plug } x_{-}=\frac{-b-\sqrt{b^{2}-4 c}}{2} \text { into } x^{2}+b x+c \\
& \left(\frac{b+\sqrt{b^{2}-4 c}}{2}\right)^{2}+b\left(\frac{-b-\sqrt{b^{2}-4 c}}{2}\right)+c \\
& =\frac{b t}{4}+\frac{b b}{2}-4 c+\frac{b^{2}-4 x}{4}-\frac{b t}{2}+\frac{b \sqrt{b^{2} / a_{c}}}{2}+k \\
& =0 \cdot N
\end{aligned}
$$

(b)

$$
x^{2}+b x+c=\underbrace{\left(x+\frac{b}{2}\right)^{2}}_{\begin{array}{c}
\geqslant 0 \\
\text { because } \\
i+j \text { as square }
\end{array}} \underbrace{-\frac{b^{2}}{4}+c}_{\substack{2 \\
>0 \\
\text { assumption sone ser be zero } \\
\text { never }}}
$$

(c) Think of y as b and y^{2} as e

$$
b^{2}-4 c=y^{2}-4 y^{2}=-3 y^{2}<0
$$

So we can use (b) to say there is no solution. and $x^{2}+x y+y^{2}$ is always >0 (assuming gyro.).

