Mathematical Analysis Problem Set 13

Reading for Monday, June 14th

Continue with the complex numbers in Courant \& Hilbert to the end of Section II.5.2.

Problem Set 13 for Monday, June 14, 2021

From Section II.5.1

Exercises 1, 2, 3, and 4 on p. 91.

Comments on the Section II.5.1 Exercises
A couple of the exponents are impossible to read. In Exercise 2, it should read:
$\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{3}$

In Exercise 3, the third expression is $\frac{1}{i^{5}}$ and the last expression is $\frac{(4-5 i)^{2}}{(2-3 i)^{2}}$.

From Section II.5.2

Exercises 1 and 2 on pp. 93-94, and exercises 1, 2, 3, 5, and 6 on p. 97

Comments on the Section II.5.2 Exercises
In Exercise 3, by "absolute value," Courant \& Hilbert mean the modulus, defined on p. 93.

For Exercise 6, this is easy if you start with Equation (8) on p. 95. You use $z_{1}=\rho_{1}\left(\cos \phi_{1}+i \sin \phi_{1}\right)$ and $z_{2}=\rho_{2}\left(\cos \phi_{1}+i \sin \phi_{1}\right)$, and simplify.

A Problem on $e^{x}, \sin x$, and $\cos x$

One way of defining e^{x} is by:
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\ldots$
Write out $e^{i y}$ and separate your answer into a real part and imaginary part (i.e., into the form $a+b i$).

By "write out" $e^{i y}$, I mean that you put put $x=i y$ into the formula for e^{x} and go crazy simplifying until you see the pattern. You can assume y is real.

One way of defining $\cos x$ and $\sin x$ is by:
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$

These expressions only work if x is in radians. They would have no end of factors of $\frac{2 \pi}{360}$ in them if x were in degrees. Icchh.

Use the expressions for cosy and siny to simplify your expression for $e^{i y}$. The simplification should be quick and dramatic. If it isn't, go back and check your your expression for $e^{i y}$.

