
Modeling in Processing Term 4 Exam

Monday, Feb. 21, 2022

Bouncing Among Obstacles — 25 pts — each part is 4 pts
 
Keep all the code for this problem in a single file. You will be emailing me the code when
you are done. Do not bother going on to (b) until you have (a) working. Do not bother
going on to (c) until you have (b) working. Etc., etc. Do not turn in something that doesn’t
run and work. If you only got (b) to run and work, then send that code to me. If (b)
doesn’t run and work turn in what you did for (a). Whatever code you turn in should be
indented and spaced according to standard Java conventions. When you are done, email
me your code with subject “Exam Problem.”

Part (a) Start by making a single object sitting at a random point on a white canvas.

Make the class of this object be Obstacle. The class will need two instance variables: a
location that is a PVector, and a length that is a float. It will have one method called
display(). An Obstacle object should display as a solid black square with sides that are
length long. Declare one Obstacle object like this after the Obstacle class:

Obstacle o;

In the setup() function initialize this object with a random location and length. The Obstacle
object is going to stay fixed, so it does not need an update() method. Display the Obstacle
object in the draw() function.

Part (b) Continue by making a simple class called Bouncer.

The class needs three instance variables: a location that is a PVector, a velocity that is a
PVector, and a radius that is a float. It does not need acceleration! It will have a method
called display(). A Bouncer object should display as a circle whose diameter is twice
radius. Display it with a black stroke and no fill. It will also need an update() method in
which it moves by DELTA_T times its velocity. Declare one Bouncer object like this:

Bouncer b;

In the setup() function, initialize this object with a random position, a random velocity, and a
random radius. Call the update() and display() methods on the Bouncer object in the
draw() function.

So far nothing interesting should happen. The bouncer just moves off the canvas with
whatever velocity it had and never comes back.

Part (c) Add a checkEdges() method to the Bouncer object. In this method, if the Bouncer
object is within radius of a wall, have it reverse direction. In the draw() function, call the
checkEdges() method right after calling the update() method.

So at least the bouncer now stays on the canvas. 

Part (d) Add a bounce() method to the Bouncer object that takes one argument: an
Obstacle object. Call the bounce() method like this just before b.checkEdges():

b.bounce(o);

Add a boolean instance variable called consumed to the Bouncer object. Initialize it to
false in the Bouncer constructor.

If the bouncer hits the obstacle, change consumed to true. HINT: The hit test is going to have
a lot of conditional tests that start like:

if (location.x + radius > obstacleLocation.x - obstacleLength / 2)

In the display() method for Bouncer, only display the bouncer if consumed is false.

Part (e) Upgrade the code to have many Obstacle objects. The declaration that was
Obstacle o; will be changed to be for an Obstacle array:

Obstacle[] obstacles = new Obstacle[5];

Upgrade the code as needed. For example, the code that looked like b.bounce(o); will
become a loop:

for (int i = 0; i < obstacles.length; ++i) {
 b.bounce(obstacles[i]);
}

Part (f) Upgrade the code again to have many Bouncer objects. The declaration that was
Bouncer b; will be changed to be for a Bouncer array:

Bouncer bouncers[] = new Bouncer[50];

Again, upgrade the code as needed. For example, it will need to loop over all the Bouncer
objects in draw(), something like this:

for (int j = 0; j < bouncers.length; ++j) {
 for (int i = 0; i < obstacles.length; ++i) {

Part (g) Instead of making the bouncers be consumed when they hit an obstacle, make the
component of their velocity reverse realistically (the reversal will depend on whatever side of
the obstacle it has hit).

Hey, the last part is pretty hard. If you’ve had enough already, congratulate yourself that
you got to (f) and email me that. If you complete everything including Part (g) perfectly,
you actually end up with 3 points of extra credit :)

