HEWLETT-PACKARD

HP-25 Applications Programs

00025-90011 Rev. B 7/75

INTRODUCTION

Welcome. You are about to step into a field that, ten years ago, was open only to users of large computer systems costing tens or hundreds of thousands of dollars, and even five years ago, required a several-thousand-dollar calculator that occupied the better part of a desktop. Today, the HP-25 puts programming into the hands of the individual. It is hoped that this book will allow you to realize some of the potential of this calculating instrument.

These HP-25 Applications Programs have been drawn from the varied fields of mathematics, statistics, finance, surveying, navigation, and games. They have been arranged in eight chapters which follow roughly the above classification. Each program is furnished with a full explanation which includes a description of the problem, any pertinent equations, a list of keystrokes to be entered into program memory, a set of instructions for running the program, and an example or two, with solutions. To use the programs does not require any proficiency in programming, but some familiarity with the HP-25 Owner's Handbook is assumed.

For users who want to enhance their understanding of programming principles and techniques, a number of programs are provided to help in this respect. The first program in each chapter contains, in addition to the usual explanations, a more detailed description of the problem, a commented list of the program keystrokes with a step-by-step tracing of the contents of the stack registers, and a list of the keystrokes required to solve the example problem. Whenever an interesting programming technique is used in one of these programs, it is described in a short section headed "Programming Remarks", which, if present, will immediately precede the list of program keystrokes.

Thus, whether your interest lies in solving a particular problem in a specific area, or in learning more about the programming power of your calculator, we hope that this book will help you get the most from your HP-25.

TABLE OF CONTENTS

Introduction
Chapter 1: Algebra and Number TheoryPlotting/Graphing
Number in Base b to Number in Base 1022Number in Base 10 to Number in Base b24Vector Operations24Cross Product26Angle Between, Norm, and Dot Product28Simultaneous Equations in 2 Unknowns30
Chapter 2: Finance Mortgage Loan
Accumulated Interest/Remaining Balance32Payment, Present Value, Number of Periods37Interest Rate39Compound Amount41
 Periodic Savings Payment, Present Value, Number of Periods
Calendar Day of the Week, Days Between Two Dates
Chapter 3: Games Moon Landing Simulator 52 Nimb 55 Teach Arithmetic 57
Chapter 4: NavigationCourse PlanningGreat Circle PlottingRhumbline NavigationSight Reduction TableGreat Circle Navigation70Great Circle Navigation
Chapter 5: Numerical MethodsNewton's Method Solution to $f(x) = 0$

Chapter 6: Statistics	
Curve Fitting	
Linear Regression	87
Exponential	92
Logarithmic	95
Power	98
General Statistics	
Covariance and Correlation Coefficient	101
Moments and Skewness	103
Distributions	
Normal Distribution	105
	108
Probability	
Factorial	110
Permutation	112
	114
Random Number Generator	116
Test Statistics	
Chi-Square Evaluation	118
Paired t Statistic	
t Statistic for Two Means	
One Sample Test Statistics for the Mean	
Chapter 7: Surveying	
Field Angle Traverse	1 20
Area by Double Meridian Distance	
Inverse from Coordinates	
	130
Chapter 8: Trigonometry and Analytical Geometry	
Coordinate Translation and Rotation	138
Triangle Solutions and Areas	
B, b, c	143
a, b, c	146
a, A, c	149
a, b, C	
a, B, C	
Hyperbolic Functions	
Inverse Hyperbolic Functions	160

A WORD ABOUT PROGRAM USAGE

Various kinds of information are provided to explain the use of each program. Besides a short description of the problem, a list of applicable equations, and an example problem with solution, there are two forms that deserve some explanation: the Program form and the User Instructions form.

Two different Program forms are provided, one of which is just a simplified version of the other. The detailed form is used for a total of eight programs, one per chapter, with the simpler form serving for the rest. A section of a detailed form, taken from the Plotting/Graphing program in Chapter 1, is shown below:

D	ISPLAY	KEY	v	v	-	-	0011115150	
LINE	CODE	ENTRY	Х	Ŷ	Z	1	COMMENTS	REGISTERS
00			v	θ				R ₀ _
01	14 09	f→R	v _x	vy			Use polar-to-rectangular for	
02	23 02	STO 2	v _x	vy			$v_x = v \cos \theta = horiz. vel.$	
03	21	x₹γ	vy	v _×				R 1 9
04	23 03	STO 3	vy	v _×			$v_y = v \sin \theta = vert. vel.$	11
05	00	0	0					1
06	23 04	STO 4	0				Initialize: t = 0	R 2 Vx
07	24 00	RCL 0	∆t				Start of loop	
08	23 51 04	STO + 4	∆t				Next time interval:]
09	24 04	RCL 4	t				t ← t + ∆t	R 3 Vy
10	15 02	g x ²	t ²					

The rightmost column, headed REGISTERS, explains what variables are stored in storage registers R_0 through R_7 . The rest of the form is divided into eight columns. The first two columns describe the appearance of the display as the program is being keyed in: LINE shows the step number for the current instruction and CODE denotes the numeric keycodes corresponding to the keystrokes in the next column, KEY ENTRY. The entries in this column are the keys that must be pressed to enter the program into program memory. The ENTER key is denoted in this column as \uparrow ; all other key designations are identical to those appearing on the HP-25.

The next four columns, X, Y, Z, and T, trace the contents of the stack registers as they would change during execution of the program in RUN mode. Each entry under X, Y, Z, or T gives the contents of the respective register *after* the instruction on that line has been executed. The COMMENTS column contains additional step-by-step explanation of the program's calculations.

These last columns, X, Y, Z, T, and COMMENTS, are provided to help the interested user acquire a detailed, in-depth understanding of a particular program, or of programming techniques in general.

The simplified Program forms contain the same information as the detailed forms except for the omission of columns X, Y, Z, T, and COMMENTS.

The User Instructions form is the user's guide to operating the program to solve his own particular problem. This form, which is composed of five columns, is illustrated below for the same program from Chapter 1, Plotting/ Graphing.

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS				
1	Key in program							
2	Store time interval	∆t	STO	0				
3	Store gravitational constant	g	STO	1				
4	Input angle and initial speed	θ	1					
		V	f	PRGM				
5	Perform steps 5 and 6 any num-							
	ber of times: Display time and		R/S				(t)	
	horizontal distance						×	
6	Display height		R/S				У	
7	To change $ heta$ or v, go to step 4.							
	To change ∆t or g, go to							
	appropriate step, store new value,							
	then go to step 4.							

Reading from left to right, the STEP column gives the instruction step number. The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed. Steps are executed in sequential order except where the INSTRUCTIONS column directs otherwise.

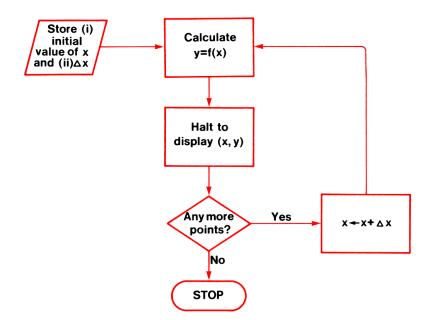
Normally, the first instruction is "Key in program", which means to store the keystrokes of the program in program memory (switch to PRGM mode, press **f PRGM**, key in the program, then switch back to RUN mode).

Repeated processes, used in most cases for a long string of input/output data, are outlined with a bold border, as in steps 5 and 6 above. In this case, the steps are repeated in order to generate a number of (x,y) pairs for a graph.

The INPUT DATA/UNITS column specifies the input data to be supplied, and the units of data if applicable. The KEYS column specifies the keys to be pressed. is used for the **ENTER** key, and all other key designations are identical to those appearing on the HP-25. Ignore any blank positions in the KEYS column.

Some programs are complex enough that users have to press additional keys to generate some results. Those keys are also shown in the KEYS column.

The OUTPUT DATA/UNITS column shows intermediate and final results that have been calculated either from the keyboard or from an executing program, and the units of data if applicable. Parentheses around an output variable, such as (t) in step 5, indicate that the result is displayed only briefly by a PAUSE instruction (f PAUSE).


.
 .

CHAPTER 1 ALGEBRA AND NUMBER THEORY

PLOTTING/GRAPHING

Most people who have labored through a ninth-grade algebra course probably still respond with a shudder to the word "graph". Evidently the tedium of finding $y = 3x^2 - 4x + 4$, for integer values of x from $-\infty$ to $+\infty$, has etched permanent memories in us all. Fortunately, we need not endure this tedium any longer. The HP-25 lends itself perfectly to this kind of repetitive calculation.

The basic idea is to generate (x, y) pairs by keying into program memory the keystrokes required to calculate y, assuming x is given. Then the user need only return to the top of memory, enter a value for x, press **R/S**, and see y displayed within seconds. The process may be repeated for as many values of x as desired. The programmer can take this process one step further into automation by also having the calculator generate each new value of x, for example, by adding 1 to the old value, or, in general, by adding a specified increment Δx . A flowchart of the process is shown below.

The program used here to illustrate this process takes a slightly different tack. We will consider the problem of plotting the trajectory of a stone which is hurled into the air with an initial velocity v at an angle to the horizontal of θ . Neglecting drag due to friction with the atmosphere, the following equations describe the stone's x- and y-coordinates as functions of the time t:

$$x = vt \cos \theta$$
 $y = vt \sin \theta - \frac{1}{2} gt^2$

where x = horizontal distance the stone has traveled

y = height of the stone g = acceleration due to gravity $\simeq 9.8 \text{ m/s}^2$ $\simeq 32 \text{ ft/s}^2$

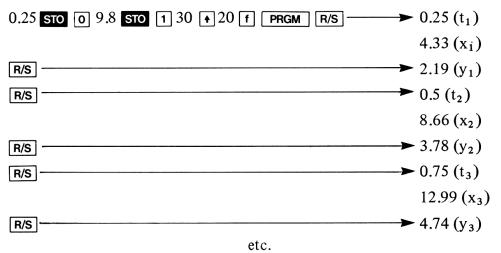
These equations differ slightly from the usual graphing function in that y is not expressed directly as a function of x, but instead both x and y are expressed as functions of a third variable t. The points to be plotted are still the ordered pairs (x, y); but now it is the time t which should be incremented by an amount Δt .

Notes:

- 1. Any consistent set of units may be used.
- 2. This is *not* a general plotting/graphing program; it merely illustrates the method by application to a specific problem. However, some study of the program listing and the flowchart should enable the user to adapt the method to his own application.

Programming Remarks:

- 1. The components of the velocity in the horizontal and vertical directions, v_x and v_y , are computed in one step by a conversion of v and θ to rectangular coordinates ($f \rightarrow R$). The values $v_x = v \cos \theta$ and $v_y = v \sin \theta$ are returned to the X- and Y-registers, respectively.
- A pause (f PAUSE) is used in this program in a very typical manner, to display briefly the output variable t, whose values are simple (0.25, 0.50, 0.75, etc.) and do not need to be written down.

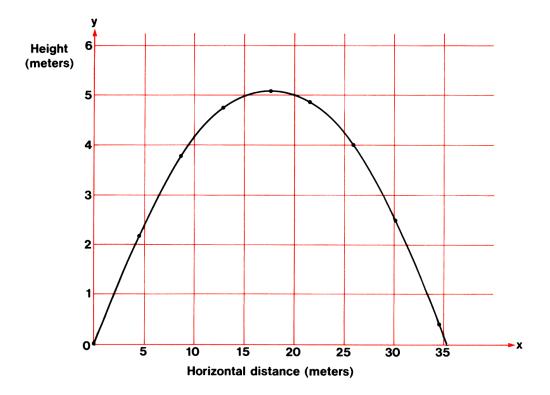

D	ISPLAY	KEY	v		_	_		
LINE	CODE	ENTRY	X	Y	z	т	COMMENTS	REGISTERS
00			v	θ				R ₀
01	14 09	f→R	٧ _×	v _y			Use polar-to-rectangular for	0
02	23 02	STO 2	٧ _x	v _y			$v_x = v \cos \theta = horiz. vel.$	
03	21	x ₹y	vy	v _x				R 1 _ 9
04	23 03	STO 3	vy	v _×			$v_y = v \sin \theta = vert. vel.$	ⁿ 1
05	00	0	0					1
06	23 04	STO 4	0				Initialize: t = 0	
07	24 00	RCL 0	∆t				Start of loop	R 2 Vx
08	23 51 04	STO + 4	∆t				Next time interval:	
09	24 04	RCL 4	t				t ← t + ∆t	B Vy
10	15 02	g x ²	t ²					R 3_Vy
11	24 01	RCL 1	g	t ²				
12	61	x	g t ²					p t
13	02	2	2	g t ²				R4_t
14	71	÷	- 1/2 g t ²					11
15	32	СНЅ	$-1/2 \text{ g t}^2$					
16	24 04	RCL 4	t	-1/2 g t ²				R 5
17	24 03	RCL 3	vy	t	$-1/2 \text{ g t}^2$			
18	61	x	v _y t	$-1/2 \text{ g t}^2$.,			-
19	51	+	y .	172 g t			$y = v_y t - 1/2 g t^2$	R 6
20	24 04	RCL 4	t	У			y - vy t - 1/2 g t	
21	24 02	RCL 2	v _x	t	V			┫╞────
22	61	x	×	y	У			R 7
23	24 04	ARCL 4	t	x			$x = v_x t$	
24	14 74	f PAUSE	t	×	¥		Deves to all all a	
25	22	R↓	x	y v	У		Pause to display t	-
26	74	R/S	x			t	the large station to a	-
27	21	x ₹y	y y	Y X		t	Halt and display x	4
28	74	R/S	y y			t	11.1	4
29	13 07	GTO 07	y y	x		t	Halt and display y	{
30	10 07	01007	Ŷ	^		t	Branch back for next t	-
31								{
32					-			-
33					+			{
34								1
35				-				1
36							-	1
37								1
38								4
39						+		4
40					+			4
41				+				4
42								-
42								-
44								4
44								4
					-			
46								
47								
48								
49								

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS					
1	Key in program								
2	Store time interval	Δt	STO	0					
3	Store gravitational constant	g	STO	1					
4	Input angle and initial speed	θ	1						
		v	f	PRGM					
5	Perform steps 5 and 6 any num-								
	ber of times: Display time and		R/S				(t)		
	horizontal distance						x		
6	Display height		R/S				У		
7	To change $ heta$ or v, go to step 4.								
	To change ∆t or g, go to								
	appropriate step, store new value,								
	then go to step 4.								

Example:

Plot the trajectory of a stone cast upwards with a velocity of 20 m/s at an angle of 30° to the horizontal. Use intervals of $\frac{1}{4}$ second between points plotted. Let g = 9.8 m/s².

Solution:



Continue until y becomes negative.

t	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25
x	4.33	8.66	12.99	17.32	21.65	25.98	30.31	34.64	38.97
у	2.19	3.78	4.74	5.10	4.84	3.98	2.49	0.40	-2.31

The table of these results is shown below:

The plot of these (x, y) values is made and the stone's trajectory is seen to be a parabola.

QUADRATIC EQUATION

The roots x_1, x_2 of $ax^2 + bx + c = 0$

are given by
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If
$$D = (b^2 - 4ac)/4a^2$$

is positive or zero, the roots are real. In these cases, better accuracy may sometimes be obtained by first computing the root with the larger absolute value:

If
$$-\frac{b}{2a} \ge 0$$
, $x_1 = -\frac{b}{2a} + \sqrt{D}$

If
$$-\frac{b}{2a} < 0$$
, $x_1 = -\frac{b}{2a} - \sqrt{D}$

In either case,

$$\mathbf{x_2} = \frac{\mathbf{c}}{\mathbf{x_1} \mathbf{a}} \, .$$

If D < 0, the roots are complex, being

$$u \pm iv = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a} i$$

D	ISPLAY	KEY	DI	SPLAY	KEY
LINE	CODE	ENTRY	LINE CODE		ENTRY
00			25	41	-
01	31	1	26	74	R/S
02	22	R↓	27	15 22	g 1/x
03	71	÷	28	24 00	RCL 0
04	02	2	29	61	х
05	71	÷	30	13 00	GTO 00
06	32	CHS	31	32	CHS
07	31	1	32	14 02	$f\sqrt{x}$
08	15 02	g x ²	33	21	x ≩y
09	22	R↓	34	74	R/S
10	22	R↓	35	21	x ≩y
11	21	x ≩y	36	13 00	GTO 00
12	71	÷	37		
13	23 00	STO 0	38		
14	41	-	39		
15	14 74	f PAUSE	40		
16	15 41	g x<0	41		
17	13 31	GTO 31	42		
18	14 02	$f\sqrt{x}$	43		
19	21	x ≩y	44		
20	15 4 1	g x<0	45		
21	13 24	GTO 24	46		
22	51	+	47		
23	13 26	GTO 26	48		
24	21	x ≩y	49		

	REGISTERS
R _{o c/a}	
R ₁	
R ₂	
R 3	
R₄	
R 5	
R ₆	
R ₇	

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS		
1	Key in program					
2	Initialize		f	PRGM		
3	Enter coefficients and display D	с	1			
		b	1			
		а	R/S			(D)
4	If $D \ge 0$, roots are real					×1
			R/S			×2
	or					
	If D $<$ 0, roots are complex of					
	form u ± iv					u
			R/S			v
5	For new case, go to step 3.					

Example:

Find solutions to the three equations below:

- 1. $x^2 + x 6 = 0$
- 2. $3x^2 + 2x 1 = 0$
- 3. $2x^2 3x + 5 = 0$

Solutions:

1.
$$D = 6.25$$

 $x_1 = -3.00$
 $x_2 = 2.00$

2. D = 0.44 $x_1 = -1.00$ $x_2 = 0.33$

3.
$$D = -1.94$$

 $x_1, x_2 = 0.75 \pm 1.39 i$

COMPLEX ARITHMETIC, +, -, x, ÷

Let $a_1 + ib_1$ and $a_2 + ib_2$ be two complex numbers. The arithmetic operations +, -, x, \div are defined as follows:

1. +, addition

$$(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + (b_1 + b_2)i$$

2. –, subtraction

$$(a_1 + ib_1) - (a_2 + ib_2) = (a_1 - a_2) + (b_1 - b_2)i$$

3. x, multiplication

$$(a_1 + ib_1) \times (a_2 + ib_2) = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

4. ÷, division

$$\frac{(a_1 + ib_1)}{(a_2 + ib_2)} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}, a_2 + ib_2 \neq 0$$

where $r_1 e^{i\theta_1}$ is the polar representation of $a_1 + ib_1$ and $r_2 e^{i\theta_2}$ is the polar representation of $a_2 + ib_2$. In each case let the answer be x + iy.

After a calculation is finished x is stored in R_0 as well as the X-register and y is stored in R_1 as well as the Y-register. In this way arithmetic operations can be chained together.

D	SPLAY	KEY	DI	SPLAY	KEY
LINE	CODE	ENTRY	LINE	CODE	ENTRY
00			25	23 02	STO 2
01	32	CHS	26	22	R↓
02	21	x ₹y	27	51	+
03	32	CHS	28	24 02	RCL 2
04	21	x ₹y	29	14 09	f→R
05	24 00	RCL 0	30	21	x ₹y
06	51	+	31	23 01	STO 1
07	21	x ≩y	32	21	x ₹y
08	24 01	RCL 1	33	23 00	STO 0
09	51	+	34	13 00	GTO 00
10	13 31	GTO 31	35		
11	15 09	g →P	36		
12	15 22	g 1/x	37		
13	21	x ₹y	38		
14	32	CHS	39		
15	21	x ≩y	40		
16	13 18	GTO 18	41		
17	15 09	g→P	42		
18	23 02	STO 2	43		
19	22	R↓	44		
20	24 01	RCL 1	45		
21	24 00	RCL 0	46		
22	15 09	g→P	47		
23	24 02	RCL 2	48		
24	61	x	49		

REGISTERS
R _o a ₁ , x
R ₁ b ₁ , y
R ₂ Used
R ₃
R ₄
R 5
R ₆
R 7

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program	`				
2	Store first complex number	bı	STO	1		
		aı	STO	0		
3	Key in next number	b ₂	1			
		a ₂				Y
4	For addition		GTO	05	R/S	x
	or					
	subtraction		f	PRGM	R/S	×
	or					
	multiplication		GTO	17	R/S	×
	or					
	division		GTO	11	R/S	×
5	For imaginary part		x ≩y			y
6	For next calculation in chain, go					
	to step 3.					
7	For new case, go to step 2.					

Examples:

1.
$$(1.2 + 3.7i) - (2.6 - 1.9i) = -1.4 + 5.6i$$

2.
$$\frac{3+4i}{7-2i} = 0.25 + 0.64i$$

3.
$$\left[\frac{(3+4i) + (7.4 - 5.6i)}{(7-2i)}\right] [3.1 + 4.6i] = 3.61 + 7.16i$$

COMPLEX FUNCTIONS |z|, z^2 , 1/z, \sqrt{z}

A complex number z = a + ib has polar representation $re^{i\theta}$. The formulas used to evaluate the given functions are as follows:

- 1. |z| = r
- 2. $z^2 = r^2 e^{i2\theta}$

3.
$$1/z = \frac{1}{r} e^{-i\theta}, z \neq 0$$

4.
$$\sqrt{z} = \pm (\sqrt{r} e^{i\theta/2}) = \pm (x + iy)$$

The answer is represented by x + iy.

DI	SPLAY	KEY	D	SPLAY	KEY	REGISTERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	negijienj
00			25	13 00	GTO 00	R _o
01	15 09	g→P	26			R ₁
02	13 00	GTO 00	27			R ₂
03	15 09	g→P	28			R 3
04	15 02	g x ²	29			R₄
05	21	x컱y	30			R 5
06	31	1	31			R ₆
07	51	+	32			R 7
08	21	x ₹y	33			
09	14 09	f→R	34			
10	13 00	GTO 00	35			
11	15 09	g→P	36			
12	15 22	g 1/x	37			
13	21	x ₹γ	38			
14	32	CHS	39			
15	21	x ₹γ	40			
16	14 09	f→R	41			
17	13 00	GTO 00	42			
18	15 09	g→P	43			
19	14 02	f√x	44			
20	21	x ₹γ	45			
21	02	2	46			
22	71	÷	47			
23	21	x ₹γ	48			
24	14 09	f→R	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	Key in z	b	1			
		а				
3	For z		f	PRGM	R/S	z
	or					Υ.
	z ²		GTO	03	R/S	×
			x컱y			У
	or					
	¹ /z		GTO	11	R/S	x
			x₹y			У
	or					
	√z		GTO	18	R/S	×
			x₹γ			У
4	For new case, go to step 2.					

Examples:

- 1. |12 5i| = 13.00
- 2. $(6 i)^2 = 35.00 12.00i$
- 3. $\frac{1}{2+5i} = 0.07 0.17i$
- 4. $\sqrt{3+4i} = \pm (2.00 \pm 1.00i)$

DETERMINANT AND INVERSE OF A 2 x 2 MATRIX

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 be a 2 x 2 matrix.

The determinant of A denoted by Det A or |A| is evaluated by the following formula:

$$Det A = a_{22} a_{11} - a_{12} a_{21}$$

Also, the program evaluates the multiplicative inverse A^{-1} of A. The following formula is used:

$$A^{-1} = \begin{bmatrix} a_{22}/\text{Det } A & -a_{12}/\text{Det } A \\ -a_{21}/\text{Det } A & a_{11}/\text{Det } A \end{bmatrix}$$

D	SPLAY	KEY	D	ISPLAY	KEY	
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	24 00	RCL 0	R _o Det A
01	24 04	RCL 4	26	71	÷	R ₁ a ₁₁
02	24 01	RCL 1	27	13 00	GTO 00	R₂ a ₁₂
03	61	x	28			R ₃ a ₂₁
04	24 02	RCL 2	29			R ₄ a _{2 2}
05	24 03	RCL 3	30			R 5
06	61	x	31			R ₆
07	41	-	32			R ₇
08	23 00	STO 0	33			
09	74	R/S	34			
10	24 04	RCL 4	35			1
11	24 00	RCL 0	36			
12	71	÷	37			
13	74	R/S	38			
14	24 02	RCL 2	39			
15	24 00	RCL 0	40			
16	71	÷	41			
17	32	CHS	42			
18	74	R/S	43			
19	24 03	RCL 3	44			
20	24 00	RCL 0	45			
21	71	÷	46			
22	32	CHS	47			
23	74	R/S	48			
24	24 01	RCL 1	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	Store matrix	a _{1 1}	STO	1		
		a _{1 2}	STO	2		
		a _{2 1}	STO	3		
		a _{2 2}	STO	4		. ч
3	Compute determinant		f	PRGM	R/S	Det A
4	Compute inverse		R/S			a ₁₁ -1
			R/S			a ₁₂ ⁻¹
			R/S			a ₂₁ ⁻¹
			R/S			a _{2 2} ⁻¹
5	For new case, go to step 2.					

Example:

Find the determinant and inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 4 & -4 \end{bmatrix}$$

Solution:

Det A = -20

$$A^{-1} = \begin{bmatrix} 0.20 & 0.10\\ 0.20 & -0.15 \end{bmatrix}$$

NUMBER IN BASE b TO NUMBER IN BASE 10

This program consists of two subprograms. The first changes the integer part of a number in base b to a number in base 10.

$$I_{10} = i_n i_{n-1} \dots i_2 i_1 = i_n b^{n-1} + i_{n-1} b^{n-2} + \dots + i_2 b + i_1$$

This is evaluated in the form

$$b (... (b (b (i_n b + i_{n-1}) + i_{n-2}) + ...) + i_2) + i_1$$

The second subprogram changes the fraction part of a number in base b to a number in base 10.

$$F_{10} = f_1 f_2 \dots f_m = f_1 b^{-1} + f_2 b^{-2} + \dots + f_m b^{-m}$$

Together the two programs can convert any number in base b to a number in base 10. Zeros must be entered in their proper place.

DI	SPLAY	КЕҮ	DI	SPLAY	KEY	REGISTERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	neuis i ers
00			25	61	х	R _o b
01	23 01	STO 1	26	51	+	R ₁ Used
02	24 00	RCL 0	27	13 20	GTO 20	$R_{2} b^{-1}$
03	31	1	28			R ₃ b ^{-j}
04	31	1	29			R 4
05	31	1	30			R 5
06	24 01	RCL 1	31			R ₆
07	74	R/S	32			R 7
08	23 01	STO 1	33			
09	34	CLX	34			
10	51	+	35			
11	61	х	36			
12	24 01	RCL 1	37			
13	51	+	38			
14	13 07	GTO 07	39			
15	24 00	RCL 0	40			
16	15 22	g 1/x	41			
17	23 02	STO 2	42			
18	23 03	STO 3	43			
19	61	x	44			
20	74	R/S	45			
21	24 02	RCL 2	46			
22	24 03	RCL 3	47			
23	61	x	48			
24	23 03	STO 3	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS		OUTPUT DATA/UNITS
1	Key in program						
2	Store base	b	STO	0			
3	For integer part, input left most						
-	digit	in	f	PRGM	R/S		
4	Perform tor j = n−1,, 2:						
	Input next digit	ij*	R/S				
5	Input final digit	i1 *	R/S				I ₁₀
6	For fractional part, input digit	~					
	after decimal	f ₁	GTO	15	R/S		
7	Perform for j = 2,, m−1:						
	Input next digit	fj*	R/S				
8	Input final digit	f _m *	R/S				F ₁₀
9	For new case, go to step 2.						
	* The stack must be maintained						
	at these points.]	

Examples:

- 1. $1777_8 = 1023_{10}$
- 2. $143.2044_5 = 48.4384_{10}$

NUMBER IN BASE 10 TO NUMBER IN BASE b

This program will convert any positive number in base 10, N_{10} , to a number in base b, N_b , where $2 \le b \le 100$. The algorithm used is an iterative one which adds one more digit to N_b at each iteration. The program pauses as each new N_b is computed to display successive approximations to the final answer. When the displayed value of N_b has reached the accuracy desired by the user, he should press **R/S** to halt the program, then **RCL** 3 to display N_b .

Notes:

- 1. When the base b is such that $11 \le b \le 100$, two display positions are allocated to each digit of N_b. Begin partitioning to the right and to the left of the decimal point. For example, 41106.12 in base 16 stands for 4B6.C.
- 2. An error indication during execution means that the machine's accuracy has been exceeded. The value of N_b is in R_3 .

DI	SPLAY	КЕҮ	DI	SPLAY	KEY	DECIOTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00	777777777		25	24 02	RCL 2	R ₀ b
01	24 00	RCL 0	26	21	x ≩y	R ₁ N ₁₀
02	01	1	27	14 03	f y ^x	R ₂ 10 or 100
03	00	0	28	24 03	RCL 3	R ₃ N _b
04	14 51	fx≷y	29	51	+	R ₄ 1 digit
05	13 09	GTO 09	30	23 03	STO 3	R 5
06	01	1	31	14 74	f PAUSE	R ₆
07	00	0	32	14 74	f PAUSE	R 7
08	00	0	33	24 00	RCL 0	
09	23 02	STO 2	34	24 04	RCL 4	
10	00	0	35	14 03	f y ^x	
11	23 03	STO 3	36	23 41 01	STO – 1	
12	24 01	RCL 1	37	13 12	GTO 12	
13	14 07	f LN	38		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
14	24 00	RCL 0	39			
15	14 07	f LN	40			
16	71	÷	41			
17	15 4 1	g x<0	42			
18	13 21	GTO 21	43			
19	14 01	f INT	44			
20	13 24	GTO 24	45			
21	14 01	f INT	46			
22	01	1	47			
23	41	-	48			
24	23 04	STO 4	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS			OUTPUT DATA/UNITS		
1	Key in program						
2	Set display format		f	FIX	9		
3	Store base and decimal number	b	STO	0			
		N ₁₀	STO	1	f	PRGM	
4	Display successive approximat-						
	ions to N _b		R/S				(N _b)
5	When number is shown with						
	desired accuracy, press R/S to						
	halt, then		RCL	3			Nb
6	For new case, go to step 3.						

Examples:

1.
$$67.32_{10} = 403.050114_{16}$$

= $43.51E_{16}$

2. $\pi = 3.141592654_{10} = 11.00100100_2$

VECTOR CROSS PRODUCT

If $A = (a_1, a_2, a_3)$ and $B = (b_1, b_2, b_3)$ are two three dimensional vectors then the cross product of A and B is denoted by A x B and is calculated as follows:

$$A \times B = \left(\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, -\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right) = (a_2 \ b_3 - a_3 \ b_2, a_3 \ b_1 - a_1 \ b_3, a_1 \ b_2 - a_2 \ b_1)$$

Let the solution be represented by (c_1, c_2, c_3) .

D	ISPLAY	KEY	D	ISPLAY	KEY	DEGLOTED
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25			Ro
01	24 02	RCL 2	26			R ₁ a ₁
02	24 06	RCL 6	27			$\mathbf{R}_{2} a_{2}$
03	61	x	28			R ₃ a ₃
04	24 03	RCL 3	29			R ₄ b ₁
05	24 05	RCL 5	30			R ₅ b ₂
06	61	x	31			R ₆ b ₃
07	41	-	32			R ₇
08	74	R/S	33			
09	24 03	RCL 3	34			
10	24 04	RCL 4	35			
11	61	x	36			
12	24 01	RCL 1	37			
13	24 06	RCL 6	38			
14	61	x	39			
15	41	-	40			
16	74	R/S	41			
17	24 01	RCL 1	42			
18	24 05	RCL 5	43			
19	61	x	44			
20	24 02	RCL 2	45			
21	24 04	RCL 4	46			
22	61	x	47			
23	41	-	48			
24	13 00	GTO 00	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS				
1	Key in program							
2	Store A	aı	STO	1				
		a ₂	STO	2				
		a3	STO	3				
3	Store B	b ₁	STO	4			Y	
		b ₂	STO	5				
		b ₃	STO	6				
4	Compute cross-product		f	PRGM	R/S		c ₁	
			R/S				c ₂	
			R/S				C3	
5	For new case, go to step 2.							

Example:

Let A = (2, 5, 2)B = (3, 3, -4).

Solution:

 $A \times B = (-26, 14, -9)$

ANGLE BETWEEN, NORM, AND DOT PRODUCT OF VECTORS

Let $\vec{a} = (a_1, a_2, ..., a_n)$ and $\vec{b} = (b_1, b_2, ..., b_n)$ be two vectors.

The norm of \vec{a} is denoted by $|\vec{a}|$ and is calculated by the following formula:

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

similarly,

$$|\vec{b}| = \sqrt{b_1^2 + b_2^2 + \dots + b_n^2}$$

The dot product of \vec{a} and \vec{b} is denoted by $\vec{a} \cdot \vec{b}$ and is calculated by the following formula:

$$\vec{a} \cdot \vec{b} = a_1 \ b_1 + a_2 \ b_2 + \dots + a_n \ b_n$$

The angle between a and b is denoted by θ and is calculated by the following formula:

$$\theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \right)$$

The angle is calculated in any angular mode. When calculated in degrees, decimal degrees are assumed.

DI	SPLAY	KEY	DI	SPLAY	KEY	REGISTERS
LINE	CODE	ENTRY	LINE	CODE	ENTRY	
00			25			$\mathbf{R}_{0} \Sigma a_{i}^{2}$
01	31	1	26			$\mathbf{R}_{1} \Sigma \mathbf{b}_{i}^{2}$
02	15 02	g x ²	27			$\mathbf{R}_{2} \Sigma a_{i} b_{i}$
03	23 51 01	STO + 1	28			R 3
04	22	R↓	29			R₄
05	21	x ₹y	30			R ₅
06	31	1	31			R ₆
07	15 02	g x ²	32			R 7
08	23 51 00	STO + 0	33			
09	22	R↓	34			
10	61	x	35			
11	23 51 02	STO + 2	36			
12	13 00	GTO 00	37			
13	24 02	RCL 2	38			
14	24 00	RCL 0	39			
15	24 01	RCL 1	40			
16	61	x	41			
17	14 02	$f\sqrt{x}$	42			
18	71	÷	43			
19	15 05	g COS ⁻¹	44			
20	13 00	GTO 00	45			
21			46			
22			47			
23			48			
24			49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Initialize		f	REG	f	PRGM	
3	Perform for i = 1,, n:						
	Key in a _i and b _i	a _i	1				
		b _i	R/S				ч.
4	Find norm of a		RCL	0	f	\sqrt{x}	ā
5	Find norm of $\vec{\mathbf{b}}$		RCL	1	f	\sqrt{x}	١Ď
6	Find a໋•b๋		RCL	2			ā•b
7	Compute angle between \vec{a} and \vec{b}		GTO	13	R/S		θ

Example:

Let A = (2, 5, 2)B = (3, 3, -4)

Solution:

 $|\vec{a}| = 5.74$ $|\vec{b}| = 5.83$ $\vec{a} \cdot \vec{b} = 13.00$ $\theta = 67.16^{\circ}$

SIMULTANEOUS EQUATIONS IN TWO UNKNOWNS

- Let ax + by = e
- and cx + dy = f

be a system of two equations in two unknowns. Cramer's Rule is used to find the solution.

$$x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{ed - bf}{ad - bc} \qquad \qquad y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{af - ec}{ad - bc}$$

If ad - bc = 0 the calculator displays *Error*. In this case no solution or no unique solution exists.

DISPLAY		KEY	DI	SPLAY	KEY	DEGIOTED
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	24 00	RCL 0	R _o ad – bc
01	24 03	RCL 3	26	71	÷	R ₁ a
02	24 05	RCL 5	27	13 00	GTO 00	R ₂ b
03	61	х	28			R 3 e
04	24 02	RCL 2	29			R ₄ c
05	24 06	RCL 6	30			R ₅ d
06	61	х	31			R ₆ f
07	41	-	32			R 7
08	24 01	RCL 1	33			
09	24 05	RCL 5	34			
10	61	х	35			
11	24 02	RCL 2	36			
12	24 04	RCL 4	37			
13	61	х	38			
14	41	-	39			
15	23 00	STO 0	40			
16	71	÷	41			
17	74	R/S	42			
18	24 01	RCL 1	43			
19	24 06	RCL 6	44			
20	61	х	45			
21	24 03	RCL 3	46			
22	24 04	RCL 4	47			
23	61	x	48			
24	41	-	49			

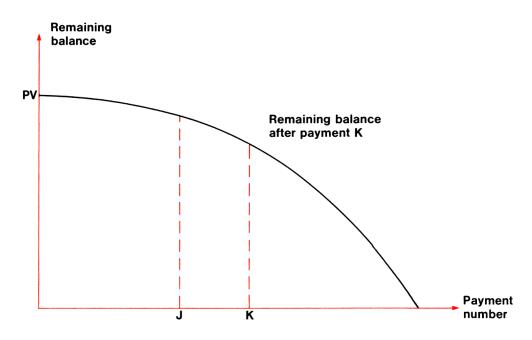
STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store constants	а	STO	1			
		b	STO	2			
		е	STO	3			
		с	STO	4			
		d	STO	5			
		f	STO	6			
3	Find x and y		f	PRGM	R/S		×
			R/S				У
4	For new case, go to step 2.						

•

Example:

5x - 3y = 122x + y = 9

Solution:


x = 3.55 y = 1.91

CHAPTER 2 FINANCE

Because many of the finance programs have certain quantities in common, a word about these variables and the names used to refer to them may be helpful.

Five main variables recur in finance problems: n, i, PMT, PV, and FV. The first of these, n, denotes the total number of periods. The periodic interest rate i must be expressed in these programs as a decimal. Thus an annual interest rate of 6% is expressed as 0.06, which as a monthly rate would be 0.06/12 = 0.005. PMT refers to the amount of the periodic payment. The present value, PV, is the value occurring at the beginning of the first period, while the future value, FV, is the value at the end of the last period.

MORTGAGE LOAN ACCUMULATED INTEREST/REMAINING BALANCE

As one enters into the realm of financial calculations, one of the most striking revelations is how much of the repayment of a loan goes to interest. A new homeowner, for example, sends off his first monthly installment of \$220.13 toward repayment of a 30-year, \$30,000 mortgage assumed at 8% annual interest. With a proud sigh and a swelling chest, the homeowner mentally checks \$220 off the \$30,000 and figures he's well on his way. Right? Well, not quite. In fact, \$200 of that payment will go to interest, and only \$20.13 to reducing the principal of the loan.

This program will allow the user to calculate the amount paid to interest, for one payment or over a number of payments, as well as the amount of principal still unpaid, i.e., the remaining balance. The user must input the following values: the initial amount of the loan, the periodic interest rate, and the periodic payment amount. He must then key in a beginning payment number, J, and an ending payment number, K. The program will compute the accumulated interest charge from payment J through payment K, inclusive, and the balance remaining after payment K. If one wishes to find the amount of interest paid in a single payment, he can simply set K = J.

The program can also be used to generate a limited amortization schedule showing the balance remaining after successive payments. This can be done by leaving J = 1 and increasing K by 1 at each iteration. Outputs will be the total amount paid to interest over the first K payments, and the balance remaining after payment K.

Equations:

$$BAL_{K} = \frac{1}{(1+i)^{-K}} \left[PMT \frac{(1+i)^{-K} - 1}{i} + PV \right]$$

$$Int_{J-K} = BAL_K - BAL_{J-1} + (K - J + 1) PMT$$

where BAL_n = remaining balance after payment n

 Int_{J-K} = accumulated interest, payments J through K

PV = initial loan amount

PMT = periodic payment amount

i = periodic interest rate

Notes:

- 1. The periodic interest rate i must be entered as a decimal. For example, for monthly payments with an annual interest rate of 9%, the periodic interest rate should be input as $i = \frac{.09}{12} = 0.0075$.
- 2. The use of this program is not restricted to mortgage loans, but applies equally well to any loan which is being repaid with equal periodic payments.

Programming Remarks:

In many finance programs, the expressions (1 + i) and $(1 + i)^n$ are used several times per program. It is often simpler to calculate the quantity once and then store it for later use, rather than calculate it anew each time. In this program, the values of $(1 + i)^{-K}$ and $(1 + i)^{-J}$ are calculated once and then stored in \mathbb{R}_7 , thus saving both program steps and execution time. The same principle, of course, applies to other expressions in other problems.

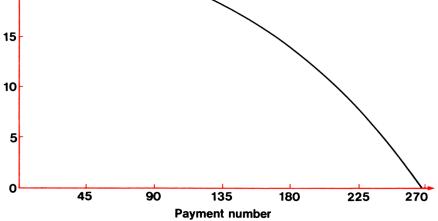
D	ISPLAY	KEY	×	v	-	-	001415155	DEGINTER
LINE	CODE	ENTRY	X	Y	Z	Т	COMMENTS	REGISTER
00								R 0
01	24 01	RCL 1	i				Calculate BAL _K	
02	01	1	1	i				
03	51	+	1+i					R 1
04	24 05	RCL 5	к	1+i				1
05	32	CHS	-К	1+i				-
06	14 03	fy ^x	(1 + i) ^{-K}					R 2 PMT
07	23 07	STO 7	(1 + i) ^{-K}					ⁿ 2
08	01	1	1	(1 + i) ^{-K}				
09	41	-	$(1 + i)^{-K} - 1$,				R 3 PV
10	24 01	RCL 1	i	$(1 + i)^{-K} - 1$				"3
11	71	÷	s	(1 - 1)			Let s = $[(1 + i)^{-K} - 1] \div i$	
12	24 02	RCL 2	PMT	s				P I
13	61	x	PMT s	-		-		R4_J
14	24 03	RCL 3	PV	PMT s				
15	51	+	PMT s + PV					p K
16	24 07	RCL 7	$(1 + i)^{-K}$	PMT s + PV		-		R 5 K
17	71	÷	BALK					
18	23 06	STO 6	BALK					R 6 BALK
19	24 01	RCL 1	i	BALK			Calculate BAL _{J-1}	R 6
20	01	1	1	i	BALK			
21	51	+	(1 + i)	BALK	BACK			$R_7 (1 + i)^-$
22	24 04	RCL 4	J	(1 + i)	BALK			R 7
23	01	1	1	J	(1 + i)	BALK		
24	41		' J – 1	(1 + i)	BALK	BALK		
25	32	снѕ	- (J - 1)	(1 + i)	BALK	BALK		-
26	14 03	f y ^x	$(1 + i)^{-(J-1)}$	BALK	BALK	BALK		-1
27	23 07	STO 7	$(1 + i)^{1-J}$	BALK	BALK	BALK		-
28	01	1	1	$(1 + i)^{1-J}$	BALK	BALK		-
29	41		$(1 + i)^{1-J} - 1$	BALK	BALK	BALK		-
30	24 01	RCL 1	i	$(1+i)^{1-J}-1$	BALK	BALK		-
31	71	÷	s	BALK	BALK	BALK	Let s = $[(1 + i)^{1-J} - 1] \div i$	-
32	24 02	RCL 2	PMT	s	BALK	BALK		1
33	24 02 61	X	PMT s	s BAL _K	BALK	BALK		1
34	24 03	X RCL 3	PV		BALK	BALK		1
35	24 03	+	PMT s + PV	BALK	BALK	BALK		1
36	24 07	RCL 7	$(1 + i)^{1-J}$	PMT s + PV	BALK	BALK		1
37	24 07	÷	BAL _{J-1}	BALK	BALK	BALK		1
38	41	_	Diff	BALK	BALK	BALK	Diff = BAL _K - BAL _{J-1}	1
39	24 05	- RCL 5	K	Diff	BALK	BALK	K – J + 1 gives no. PMT's	-
40	24 04	RCL 4	J	к	Diff			-
40	24 04	- HUL 4	J K–J	K Diff		BALK	from J through K	4
41 · 42	01	-	к-J 1	K–J	BAL _K Diff	BALK		-1
42 43	51	+	' К-J+1	N-J Diff		BALK		4
43 44	24 02	+ RCL 2	K – J + 1 PMT		BALK	BALK		-1
				m	Diff	BALK	m = K - J + 1	-1
45	61	×	m PMT	Diff	BALK	BALK	m PMT is \$ paid, J–K	4
46	51	+	Intj-K	BALK	BALK	BALK	Display Int _{J-K}	
47	74	R/S	Int _{J-K}	BALK	BALK	BALK		4
48	21	x ₹y	BALK	Intj_K	BALK	BALK	Display BAL _K	4
49	13 00	GTO 00	BALK	Intj_K	BALK	BALK		

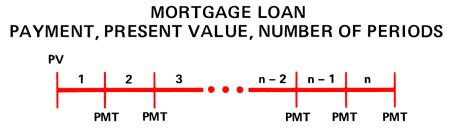
STEP	INSTRUCTIONS	INPUT DATA/UNITS			KEYS		OUTPUT DATA/UNITS
1	Key in program						
2	Store the following variables:						
	Periodic interest (decimal)	i	STO	1			
	Periodic payment	РМТ	STO	2			
	Initial Ioan amount	PV	STO	3			
	Starting payment number	J	STO	4			
	Ending payment number	к	STO	5	f	PRGM	
3	Compute accumulated interest						
	from payments J through K.		R/S				Int _{J-K}
4	Display remaining balance after						
	payment K		R/S				BAL _K
5	To change any variable, store						
	the new value in the appropriate						
	register and go to step 3.						

Example:

A mortgage is arranged so that the first payment is made at the end of October, 1974 (i.e., October is payment period 1). It is a \$25,000 loan at 8% with monthly payments of \$200. What is the accumulated interest for 1974 (periods 1-3) and for 1975 (periods 4-15) and what balance remains at the end of each year? Also, generate a schedule of interest paid and remaining balance for the first 5 years of the mortgage (periods 12, 24, 36, 48, 60).

.


Solution:


(Notice that i must be entered as a decimal, monthly rate.)

.08 • 12 ÷ STO 1 200 STO 2 25000	STO 3 1
STO 4 3 STO 5 f PRGM R/S	→ 499.33
	(interest paid in 1974)
R/S	► 24899.33
	(remaining balance at end of 1974)
4 STO 4 15 STO 5 R/S	▶ 1976.65
	(interest paid in 1975)
R/S	→ 24475.98
	(remaining balance at end of 1975)

Now, generate the amortization schedule:

1 STO 4 12 STO 5 R/S	▶ 1985.00
	(interest thru 1 st year)
R/S	► 24585.00
	(remaining balance after 1 st year)
24 STO 5 R/S	→ 3935.56
	(interest thru 2 nd year)
R/S	► 24135.56
	(remaining balance after 2 nd year)
36 STO 5 R/S	► 5848.81
	(interest thru 3 rd year)
R/S	► 23648.81
	(remaining balance after 3 rd year)
48 STO 5 R/S	→ 7721.67
	(interest thru 4 th year)
R/S	→ 23121.67 (remaining balance after 4 th year)
	\sim (remaining balance after 4 year) \sim 9550.77
60 STO 5 R/S	(interest thru 5 th year)
	→ 22550.77
R/S	(remaining balance after 5 th year)
	(remaining balance arter 5 year)
Remaining balance (K\$)	
25	
	PV = \$25000.00 i = 8%
20-	PMT = \$200.00
	<
15-	
	\sim
	\mathbf{X}

For a loan which is being repaid with equal periodic payments, this program will calculate the payment amount, the present value, or the number of periods of the loan, given the periodic interest rate and the two other variables.

Remember that the periodic interest rate i must be expressed as a decimal, e.g., 6% is represented as 0.06.

The equations used are as follows:

$$PMT = PV\left[\frac{i}{1 - (1 + i)^{-n}}\right] \qquad PV = PMT\left[\frac{1 - (1 + i)^{-n}}{i}\right]$$

$$n = -\frac{\ln (1 - i PV/PMT)}{\ln (1 + i)}$$

DI	SPLAY	KEY	D	ISPLAY	KEY	DECIOTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	24 03	RCL 3	R _o
01	01	1	26	61	x	R ₁ n
02	24 02	RCL 2	27	13 00	GTO 00	R ₂ i
03	01	1	28	01	1	R ₃ PMT
04	51	+	29	24 04	RCL 4	R₄ PV
05	24 01	RCL 1	30	24 03	RCL 3	R 5
06	32	CHS	31	71	÷	R ₆
07	14 03	f y ^x	32	24 02	RCL 2	R 7
08	41	-	33	61	х	
09	24 02	RCL 2	34	41	-	
10	21	x ≩y	35	14 07	f LN	
11	71	÷	36	24 02	RCL 2	
12	24 04	RCL 4	37	01	1	
13	61	x	38	51	+	
14	13 00	GTO 00	39	14 07	f LN	
15	01	1	40	71	÷	
16	24 02	RCL 2	41	32	CHS	
17	01	1	42	13 00	GTO 00	
18	51	+	43			
19	24 01	RCL 1	44			
20	32	CHS	45			
21	14 03	f y ^x	46			
22	41	-	47			
23	24 02	RCL 2	48			
24	71	÷	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	For payment	n	STO	1		
		i	STO	2		
		PV	STO	4		
			f	PRGM	R/S	РМТ
3	For present value	n	STO	1		
		i	STO	2		
		РМТ	STO	3		
			GTO	15	R/S	PV
4	For number of payments	i	STO	2		
		РМТ	STO	3		
		PV	STO	4		
			GTO	28	R/S	n
5	For new case, go to step 2, 3, or					
	4.					


Examples:

- 1. What monthly payment is required to amortize a \$3000 loan at 9.5% (.095) in 36 months?
- 2. You are willing to pay \$175 per month for 24 months on a 9.5% loan. How much can you borrow?
- 3. How many months will it take to pay off a \$4000 loan if your monthly payment is \$200 and the annual interest rate is 9.5%?

Solutions:

Divide 0.095 by 12 to find the monthly interest rate expressed as a decimal.

- 1. \$96.10
- 2. \$3811.43
- 3. 21.86 months

This program will calculate the interest rate on a loan with equal periodic payments. The user must specify the number of periods, the present value or initial loan amount, and the payment amount.

The program performs an iterative solution for i using Newton's method:

$$\mathbf{i}_{k+1} = \mathbf{i}_k - \frac{\mathbf{f}(\mathbf{i}_k)}{\mathbf{f}'(\mathbf{i}_k)}$$

where

$$f(i) = \frac{1 - (1 + i)^{-n}}{i} - \frac{PV}{PMT}$$

The initial guess for i is given by

$$i_o = \frac{PMT}{PV} - \frac{PV}{n^2 PMT}$$

DI	SPLAY	KEY	[DISPLAY	KEY	DECIOTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	15 22	g 1/x	R _o
01	24 03	RCL 3	26	01	1	R ₁ n
02	31	1	27	51	+	R ₂ i
03	15 22	g 1/x	28	71	÷	R 3 PV/PMT
04	21	x ₹y	29	01	1	R ₄ (1 + i) ⁻ⁿ
05	24 01	RCL 1	30	51	+	R ₅
06	15 02	g x ²	31	24 05	RCL 5	R ₆
07	71	÷	32	61	x	R 7
08	41	-	33	01	1	
09	23 02	STO 2	34	41	-	
10	24 03	RCL 3	35	24 02	RCL 2	
11	24 02	RCL 2	36	71	÷	
12	61	x	37	71	÷	
13	01	1	38	23 51 02	STO + 2	
14	24 02	RCL 2	39	15 03	g ABS	
15	01	1	40	33	EEX	
16	51	+	41	06	6	
17	24 01	RCL 1	42	32	CHS]
18	32	CHS	43	14 41	f x≺y	
19	14 03	fy ^x	44	13 10	GTO 10	
20	23 05	STO 5	45	24 02	RCL 2	
21	41	-	46	13 00	GTO 00	
22	41	-	47]
23	24 01	RCL 1	48]
24	24 02	RCL 2	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	Store number of payments	n	STO	1		
3	Key in present value and pay-					
	ment amount	PV	1			
		РМТ	÷	STO	3	ΡV/ΡΜΤ
4	Compute interest		f	PRGM	R/S	i (decimal)
			EEX	2	x	i (%)
5	For new case, go to step 2.					

Example:

You recently obtained a \$2500 car loan for 36 months. If your monthly payment is \$86.67, what is the annual percentage rate?

Solution:

15.01%

COMPOUND AMOUNT

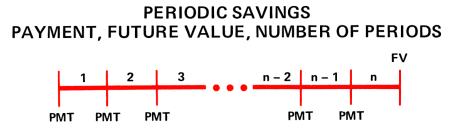
This program applies to an amount of principal that has been placed into an account and compounded periodically, with no further deposits. The important variables in this case are the number of compounding periods n, the periodic interest rate i, the principal or present value PV, the future value of the account FV, and the amount of interest accrued I. Any of these may be calculated from the others by these formulas:

$$n = \frac{\ln (FV/PV)}{\ln (1 + i)}$$
 $i = \left(\frac{FV}{PV}\right)^{1/n} - 1$ $PV = FV (1 + i)^{-n}$

$$FV = PV (1 + i)^n$$
 $I = PV [(1 + i)^n - 1]$

D	SPLAY	KEY	D	SPLAY	KEY	DECIOTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	14 03	f y ^x	Ro
01	24 05	RCL 5	26	24 05	RCL 5	R ₁ n
02	24 04	RCL 4	27	61	x	R ₂ i
03	71	÷	28	13 00	GTO 00	R 3
04	14 07	f LN	29	24 02	RCL 2	R₄ PV
05	24 02	RCL 2	30	01	1	R ₅ FV
06	01	1	31	51	+	R ₆
07	51	+	32	24 01	RCL 1	R 7
08	14 07	f LN	33	14 03	fy×	
09	71	÷	34	24 04	RCL 4	
10	13 00	GTO 00	35	61	x	
11	24 05	RCL 5	36	13 00	GTO 00	
12	24 04	RCL 4	37	24 02	RCL 2	
13	71	÷	38	01	1	
14	24 01	RCL 1	39	51	+	
15	15 22	g 1/x	40	24 01	RCL 1	
16	14 03	f y ^x	41	14 03	f y ^x	
17	01	1	42	01	1	
18	41	-	43	41	-	
19	13 00	GTO 00	44	24 04	RCL 4	
20	24 02	RCL 2	45	61	x	
21	01	1	46	13 00	GTO 00	
22	51	+	47			
23	24 01	RCL 1	48			
24	32	CHS	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	To compute number of periods	i (decimal)	STO	2		
		PV	STO	4		
		FV	STO	5		
			f	PRGM	R/S	n
3	To compute periodic interest					
	rate	n	STO	1		
		PV	STO	4		
		FV	STO	5		
			GTO	11	R/S	i (decimal)
4	To compute principal	n	STO	1		
		i (decimal)	STO	2		
		FV	STO	5		
			GTO	20	R/S	PV
5	To compute future value	n	STO	1		
		i (decimal)	STO	2		
		PV	STO	4		
			GTO	29	R/S	FV
6	To compute accrued interest	n	STO	1		
		i (decimal)	STO	2		
		PV	ѕто	4		
			GTO	37	R/S	I
7	For new case, go to step 2, 3, 4,					
	5, or 6.					×.


42 Chapter 2 Finance

Examples:

- 1. Assuming an annual inflation rate of 10%, how long will it take prices to double? (Suggestion: let PV = 1, FV = 2)
- 2. Find the rate of return on \$1000 compounded quarterly if it amounts to \$1500 in 5 years.
- 3. How much will you need to invest today at 5 3/4% compounded quarterly to have \$3000 in 5 years?
- 4. What is the future value of \$2000 invested at 5 3/4% compounded quarterly for 4 years (16 quarters)?
- 5. How much interest do you receive on \$1500 deposited for 10 years if interest at 5 1/2% is compounded annually?

Solutions:

- 1. 7.27 years
- 2. .0205 quarterly = 8.19% annually
- 3. \$2255.02 (i = 0.0575/4)
- 4. \$2513.08 (i = 0.0575/4)
- 5. \$1062.22 (i = 0.055)

This program calculates payment, future value, or number of time periods for a schedule of periodic payments into a savings account, given the interest rate and two of the three other variables. Remember that i must be input as a decimal, e.g., 6% is expressed as 0.06.

Then n, PMT, or FV may be calculated from the following formulas:

$$n = \frac{\ln \left[\frac{FV i}{PMT} + (1+i)\right]}{\ln (1+i)} - 1 \qquad PMT = \frac{FV i}{(1+i)^{n+1} - (1+i)}$$
$$FV = \frac{PMT}{i} \left[(1+i)^{n+1} - (1+i) \right]$$

D	SPLAY	KEY	D	ISPLAY	KEY	DECISTEDO
LINE	CODE	ENTRY	LINE	CODE	ENTRY	REGISTERS
00			25	14 73	f LASTx	R o (1 + i)
01	24 02	RCL 2	26	24 01	RCL 1	R ₁ n
02	24 05	RCL 5	27	14 03	f y ^x	R ₂ i
03	61	x	28	01	1	R ₃ PMT
04	24 03	RCL 3	29	41	-	R ₄
05	71	÷	30	71	÷	R₅FV
06	24 02	RCL 2	31	13 00	GTO 00	R ₆
07	01	1	32	24 03	RCL 3	R ₇
08	51	+	33	24 02	RCL 2	
09	23 00	STO 0	34	01	1	
10	51	+	35	51	+	
11	14 07	f LN	36	61	х	
12	24 00	RCL 0	37	14 73	f LASTx	
13	14 07	f LN	38	24 01	RCL 1	
14	71	÷	39	14 03	f y ^x	
15	01	1	40	01	1	
16	41	-	41	41	-	
17	13 00	GTO 00	42	61	x	
18	24 05	RCL 5	43	24 02	RCL 2	
19	24 02	RCL 2	44	71	÷	
20	61	x	45	13 00	GTO 00	
21	24 02	RCL 2	46			
22	01	1	47			
23	51	+	48			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
24	71	÷	49			

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Key in program					
2	To compute number of pay-					
	ments	i (decimal)	STO	2		
		РМТ	STO	3		
		FV	STO	5		v
			f	PRGM	R/S	n
3	To compute periodic payment					
	amount	n	STO	1		
		i (decimal)	STO	2		
		FV	STO	5		
			GTO	18	R/S	РМТ
4	To compute future value	n	STO	1		
		i (decimal)	STO	2		
		РМТ	STO	3		
			GTO	32	R/S	FV
5	For new case, go to step 2, 3,					
	or 4.					

Examples:

- 1. How long will it take to save \$15,000 if you are making quarterly deposits of \$400 at 6% annual interest?
- 2. You will need \$10,000 in 7 years. How large a monthly payment do you need to make if the annual interest rate is 6 1/2%?
- 3. How much money will a person have if he deposits \$150 at the end of each month for a period of 3 years? He receives 6% annual interest.

Solutions:

.

- 1. 29.62 quarters or 7.40 years (i = .06/4)
- 2. \$93.82 (n = 84, i = .065/12)
- 3. \$5929.92 (n = 36, i = .06/12)

DISCOUNTED CASH FLOW NET PRESENT VALUE, INTERNAL RATE OF RETURN

The primary purpose of this program is to compute the net present value of a series of cash flows. In general, an initial investment V_0 is made in some enterprise which is expected to bring in periodic cash flows $C_1, C_2, ..., C_n$. Given a discount rate i, which must be entered as a decimal, then for each cash flow C_k , the program will compute the net present value at period k, NPV_k. A negative value for NPV_k indicates that the enterprise has not yet been profitable. A positive NPV_k means that the enterprise has been profitable, to the extent that a rate of return i on the original investment has been exceeded.

The program may also be used iteratively to calculate an internal rate of return. The objective here is to find the discount rate i which will make the final net present value, NPV_n , equal to zero. The procedure, then, is to store V_0 and a first guess at the rate of return i, input the cash flows C_1 through C_n ; and thus find NPV_n . If NPV_n is negative, the estimated rate of return was too high; if NPV_n is positive, the estimate for i was too low. Adjust the estimate for i accordingly, store the new i, and input the cash flows again. Inspect the new value of NPV_n to obtain a new estimate for i and repeat the process. The entire procedure is repeated until NPV_n is zero, or very close to it. The last value of i input is then regarded as the internal rate of return.

Each figure for net present value is found by

NPV_k = - V₀ +
$$\sum_{j=1}^{k} \frac{C_j}{(1+i)^j}$$

D	ISPLAY	KEY	DI	SPLAY	KEY	Γ
LINE	CODE	ENTRY	LINE	CODE	ENTRY	
00			25			Γ
01	24 01	RCL 1	26			
02	01	1	27			
03	23 04	STO 4	28			
04	51	+	29			
05	23 02	STO 2	30			
06	71	÷	31			
07	24 00	RCL 0	32			
08	41	-	33			1
09	24 04	RCL 4	34			
10	14 74	f PAUSE	35			
11	21	x ≩y	36			
12	23 03	STO 3	37		1	
13	74	R/S	38			
14	24 02	RCL 2	39			
15	24 04	RCL 4	40			
16	01	1	41			
17	51	+	42			
18	23 04	STO 4	43			
19	14 03	f y ^x	44			
20	71	÷	45			
21	24 03	RCL 3	46			
22	51	+	47			
23	13 09	GTO 09	48			
24			49			

REGISTERS						
R _o V _o						
R ₁ i						
R ₂ (1 + i)						
R 3 NPV k						
R ₄ k						
R 5						
R ₆						
R ₇						

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store Initial investment and						
	discount rate	V ₀	STO	0			
		i (decimal)	ѕто	1	f	PRGM	
3	Perform for k = 1,, n:						
	Input C_k and compute NPV k	C _k	R/S				(k)
							NPV _k
4	For new case, go to step 2.						

Example:

You have been offered an investment opportunity for 150,000 at a capital cost of 10% after taxes. Based on the following cash flows, will this investment be profitable?

Year	Cash Flow
1	\$30,000
2	26,300
3	50,000
4	55,600
5	45,200

Solutions:

Remember to enter i as 0.10.

 $NPV_1 = -\$122,727.27$ $NPV_2 = -\$100,991.74$ $NPV_3 = -\$63,426.00$ $NPV_4 = -\$25,450.45$ $NPV_5 = \$2,615.20$

Since C_5 is positive the cash flow is profitable to the extent that the cost of capital is 10%.

CALENDAR DAY OF THE WEEK DAYS BETWEEN TWO DATES

This program will compute the day of the week for a given date, or the number of days between two dates, for any dates from March 1, 1700, to February 28, 2100. The program works by assigning the number 1 to March 1, 1700, and a corresponding number to each succeeding day. When computing day of the week, a 0 represents Sunday, 1 Monday, 2 Tuesday, etc.

Thus for month m, day d, year y, the number N assigned to that date is

N(m, d, y) = [365.25 g(y,m)] + [30.6 f(m)] + D - 621049

where

$$g(y,m) = \begin{cases} y-1 \text{ if } m = 1 \text{ or } 2\\ y \text{ if } m > 2 \end{cases} \text{ and } f(m) = \begin{cases} m+13 \text{ if } m = 1 \text{ or } 2\\ m+1 \text{ if } m > 2 \end{cases}$$

[m] represents the integer function, f [INT]. E.g., [6.34] = 6.

Note:

For days from March 1, 1700, to February 28, 1800, 2 days must be added to the value for N calculated by the program. For days from March 1, 1800, to February 28, 1900, 1 day must be added.

DISPLAY		KEY		DISPLAY	KEY	DECISTERS
LINE	CODE	ENTRY	LINE CODE E		ENTRY	REGISTERS
00			25	00	0	Ro
01	03	3	26	73	•	R 1 Month
02	24 01	RCL 1	27	06	6	R 2 Day
03	14 41	f x≺y	28	61	x	R 3 Year
04	13 09	GTO 09	29	14 01	f INT	R ₄
05	01	1	30	51	+	R ₅
06	51	+	31	24 02	RCL 2	R ₆
07	24 03	RCL 3	32	51	+	R 7 Temporary
08	13 15	GTO 15	33	06	6	
09	01	1	34	02	2	
10	03	3	35	01	1	
11	51	+	36	00	0	
12	24 03	RCL 3	37	04	4	
13	01	1	38	09	9	
14	41	-	39	41	-	
15	03	3	40	74	R/S	
16	06	6	41	07	7	
17	05	5	42	71	÷	
18	73	•	43	15 01	g FRAC	
19	02	2	44	07	7	
20	05	5	45	61	x]
21	61	x	46	13 00	GTO 00	
22	14 01	f INT	47]
23	21	x ≩y	48]
24	03	3	49			

50 Chapter 2 Finance

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store month	m	STO	1			
	day	d	STO	2			
	year	У	STO	3			
3	Compute N(m, d, y)		f	PRGM	R/S		N(m, d, y)
4	For day of week, go to step 8						
5	For days between dates, store						
	first N		STO	7			
6	Repeat steps 2 and 3 for second						
	date, then		RCL	7	-		# Days
7	For new case, go to step 2.						
8	For day of week (0 = Sunday)		R/S				Day (0,, 6)
9	For new case, go to step 2.						

Examples:

- 1. What day of the week was July 4, 1776?
- 2. Find the number of days between March 27, 1948, and April 7, 1975.

Solutions:

- 1. Thursday (4). (Remember to add 2 days.)
- 2. 9872.