| The Chi-Square Test

What is a Chi-square test?

A Chi-square test is a hypothesis testing method. Two common Chi-square tests involve checking if
observed frequencies in one or more categories match expected frequencies.

Is a Chi-square test the same as a y* test?
Yes, y is the Greek symbol Chi.

What are my choices?

If you have a single measurement variable, you use a Chi-square goodness of fit test. If you have two
measurement variables, you use a Chi-square test of independence. There are other Chi-square tests, but
these two are the most common.

Types of Chi-square tests

You use a Chi-square test for hypothesis tests about whether your data is as expected. The basic idea behind the
test is to compare the observed values in your data to the expected values that you would see if the null hypothesis
is true.

There are two commonly used Chi-square tests: the Chi-square goodness of fit test and the Chi-square test of
independence. Both tests involve variables that divide your data into categories. As a result, people can be confused
about which test to use. The table below compares the two tests.

Visit the individual pages for each type of Chi-square test to see examples along with details on assumptions and
calculations.

Table 1: Choosing a Chi-square test

Chi-Square Goodness of Fit Test Chi-Square Test of Independence
Number of One Two
variables
Decide if one variable is likely to
Purpose of test come from a given distribution or  Decide if two variables might be related or not

not

Decide if bags of candy have the
Example same number of pieces of each
flavor or not

Decide if movie goers' decision to buy snacks is
related to the type of movie they plan to watch

H,: proportion of flavors of candy = H,: proportion of people who buy snacks is
are the same independent of the movie type

Hypotheses in

example H.: proportions of flavors are not H,: proportion of people who buy snacks is different
the same for different types of movies




Theoretical
distribution used in  Chi-Square
test

Chi-Square

Number of categories minus 1

Degrees of freedom o 1p our example, number of

flavors of candy minus 1

Number of categories for first variable minus 1,
multiplied by number of categories for second
variable minus 1

® In our example, number of movie categories
minus 1, multiplied by 1 (because snack purchase
is a Yes/No variable and 2-1=1)

How to perform a Chi-square test

For both the Chi-square goodness of fit test and the Chi-square test of independence, you perform the same
analysis steps, listed below. Visit the pages for each type of test to see these steps in action.

1. Define your null and alternative hypotheses before collecting your data.

2. Decide on the alpha value. This involves deciding the risk you are willing to take of drawing the wrong
conclusion. For example, suppose you set a=0.05 when testing for independence. Here, you have decided on a
5% risk of concluding the two variables are independent when in reality they are not.

3. Check the data for errors.

4. Check the assumptions for the test. (Visit the pages for each test type for more detail on assumptions.)

5. Perform the test and draw your conclusion.

Both Chi-square tests in the table above involve calculating a test statistic. The basic idea behind the tests is that
you compare the actual data values with what would be expected if the null hypothesis is true. The test statistic
involves finding the squared difference between actual and expected data values, and dividing that difference by
the expected data values. You do this for each data point and add up the values.

Then, you compare the test statistic to a theoretical value from the Chi-square distribution. The theoretical value
depends on both the alpha value and the degrees of freedom for your data. Visit the pages for each test type for

detailed examples.



B Chi-Square Goodness of Fit Test

What is the Chi-square goodness of fit test?

The Chi-square goodness of fit test is a statistical hypothesis test used to determine whether a variable is
likely to come from a specified distribution or not. It is often used to evaluate whether sample data is
representative of the full population.

When can I use the test?
You can use the test when you have counts of values for a categorical variable.

Is this test the same as Pearson’s Chi-square test?
Yes.

Using the Chi-square goodness of fit test

The Chi-square goodness of fit test checks whether your sample data is likely to be from a specific theoretical
distribution. We have a set of data values, and an idea about how the data values are distributed. The test gives us a
way to decide if the data values have a “good enough” fit to our idea, or if our idea is questionable.

What do we need?

For the goodness of fit test, we need one variable. We also need an idea, or hypothesis, about how that variable is
distributed. Here are a couple of examples:

* We have bags of candy with five flavors in each bag. The bags should contain an equal number of pieces of each
flavor. The idea we'd like to test is that the proportions of the five flavors in each bag are the same.

® For a group of children’s sports teams, we want children with a lot of experience, some experience and no
experience shared evenly across the teams. Suppose we know that 20 percent of the players in the league have a
lot of experience, 65 percent have some experience and 15 percent are new players with no experience. The idea
we'd like to test is that each team has the same proportion of children with a lot, some or no experience as the
league as a whole.

To apply the goodness of fit test to a data set we need:
® Data values that are a simple random sample from the full population.

® Categorical or nominal data. The Chi-square goodness of fit test is not appropriate for continuous data.
* A data set that is large enough so that at least five values are expected in each of the observed data categories.



Chi-square goodness of fit test example

Let’s use the bags of candy as an example. We collect a random sample of ten bags. Each bag has 100 pieces of
candy and five flavors. Our hypothesis is that the proportions of the five flavors in each bag are the same.

Let’s start by answering: Is the Chi-square goodness of fit test an appropriate method to evaluate the distribution of
flavors in bags of candy?

* We have a simple random sample of 10 bags of candy. We meet this requirement.

® QOur categorical variable is the flavors of candy. We have the count of each flavor in 10 bags of candy. We meet
this requirement.

* Each bag has 100 pieces of candy. Each bag has five flavors of candy. We expect to have equal numbers for each
flavor. This means we expect 100 / 5 = 20 pieces of candy in each flavor from each bag. For 10 bags in our
sample, we expect 10 x 20 = 200 pieces of candy in each flavor. This is more than the requirement of five
expected values in each category.

Based on the answers above, yes, the Chi-square goodness of fit test is an appropriate method to evaluate the
distribution of the flavors in bags of candy.

Figure 1 below shows the combined flavor counts from all 10 bags of candy.
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Figure 1: Bar chart of counts of candy flavors from all 10 bags

Without doing any statistics, we can see that the number of pieces for each flavor are not the same. Some flavors
have fewer than the expected 200 pieces and some have more. But how different are the proportions of flavors?
Are the number of pieces “close enough” for us to conclude that across many bags there are the same number of
pieces for each flavor? Or are the number of pieces too different for us to draw this conclusion? Another way to
phrase this is, do our data values give a “good enough” fit to the idea of equal numbers of pieces of candy for each
flavor or not?

To decide, we find the difference between what we have and what we expect. Then, to give flavors with fewer
pieces than expected the same importance as flavors with more pieces than expected, we square the difference.
Next, we divide the square by the expected count, and sum those values. This gives us our test statistic.



These steps are much easier to understand using numbers from our example.

Let’s start by listing what we expect if each bag has the same number of pieces for each flavor. Above, we

calculated this as 200 for 10 bags of candy.

Table 1: Comparison of actual vs expected number of pieces of each flavor of candy

Number of Expected
Flavor Pieces of Candy | Number of

(10 bags) Pieces of Candy
Apple 180 200
Lime 250 200
Cherry 120 200
Cherry 225 200
Grape 225 200

Now, we find the difference between what we have observed in our data and what we expect. The last column in

Table 2 below shows this difference:

Table 2: Difference between observed and expected pieces of candy by flavor

Number of Expected
Flavor Pieces of Candy | Number of Observed-Expected
(10 bags) Pieces of Candy
Apple 180 200 180-200 = -20
Lime 250 200 250-200 = 50
Cherry 120 200 120-200 = -80
Orange 225 200 225-200 = 25
Grape 225 200 225-200 = 25

Some of the differences are positive and some are negative. If we simply added them up, we would get zero.
Instead, we square the differences. This gives equal importance to the flavors of candy that have fewer pieces than

expected, and the flavors that have more pieces than expected.

Table 3: Calculation of the squared difference between Observed and Expected for each flavor of candy

Number of Expected

Flavor Pieces of Candy | Number of Observed-Expected Squared Difference
(10 bags) Pieces of Candy

Apple 180 200 180-200 = -20 400

Lime 250 200 250-200 = 50 2500

Cherry 120 200 120-200 = -80 6400

Orange 225 200 225-200 = 25 625

Grape 225 200 225-200 = 25 625




Next, we divide the squared difference by the expected number:

Table 4: Calculation of the squared difference/expected number of pieces of candy per flavor

Number of Expected .
Flavor g;erfgs ?lt;) Il;lilércrél;egfof Observed-Expected Squared Difference f%ﬁgg%?eﬁlgiﬁggi
bags) Candy
Apple 180 200 180-200 = -20 400 400/200 = 2
Lime 250 200 250-200 = 50 2500 2500/200 =12.5
Cherry 120 200 120-200 = -80 6400 6400 /200 =32
Orange 225 200 225-200 =25 625 625/200 = 3.125
Grape 225 200 225-200 = 25 625 625/200 = 3.125

Finally, we add the numbers in the final column to calculate our test statistic:

2+412.5+ 32 + 3.125 + 3.125 = 52.75

To draw a conclusion, we compare the test statistic to a critical value from the Chi-Square distribution. This activity
involves four steps:

1. We first decide on the risk we are willing to take of drawing an incorrect conclusion based on our sample
observations. For the candy data, we decide prior to collecting data that we are willing to take a 5% risk of
concluding that the flavor counts in each bag across the full population are not equal when they really are. In
statistics-speak, we set the significance level, «, to 0.05.

2. We calculate a test statistic. Our test statistic is 52.75.

3. We find the theoretical value from the Chi-square distribution based on our significance level. The theoretical
value is the value we would expect if the bags contain the same number of pieces of candy for each flavor.

In addition to the significance level, we also need the degrees of freedom to find this value. For the goodness of
fit test, this is one fewer than the number of categories. We have five flavors of candy, so we have 5 -1=4
degrees of freedom.

The Chi-square value with o = 0.05 and 4 degrees of freedom is 9.488.

4. We compare the value of our test statistic (52.75) to the Chi-square value. Since 52.75 > 9.488, we reject the null
hypothesis that the proportions of flavors of candy are equal.



We make a practical conclusion that bags of candy across the full population do not have an equal number of
pieces for the five flavors. This makes sense if you look at the original data. If your favorite flavor is Lime, you are
likely to have more of your favorite flavor than the other flavors. If your favorite flavor is Cherry, you are likely to be
unhappy because there will be fewer pieces of Cherry candy than you expect.

Understanding results
Let’s use a few graphs to understand the test and the results.

A simple bar chart of the data shows the observed counts for the flavors of candy:
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Figure 2: Bar chart of observed counts for flavors of candy

Another simple bar chart shows the expected counts of 200 per flavor. This is what our chart would look like if the
bags of candy had an equal number of pieces of each flavor.
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Figure 3: Bar chart of expected counts of each flavor



The side-by-side chart below shows the actual observed number of pieces of candy in blue. The orange bars show
the expected number of pieces. You can see that some flavors have more pieces than we expect, and other flavors
have fewer pieces.
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Figure 4: Bar chart comparing actual vs. expected counts of candy

The statistical test is a way to quantify the difference. Is the actual data from our sample “close enough” to what is
expected to conclude that the flavor proportions in the full population of bags are equal? Or not? From the candy
data above, most people would say the data is not “close enough” even without a statistical test.

What if your data looked like the example in Figure 5 below instead? The purple bars show the observed counts
and the orange bars show the expected counts. Some people would say the data is “close enough” but others would
say it is not. The statistical test gives a common way to make the decision, so that everyone makes the same
decision on a set of data values.

'Another Data Example with Actual and Expected Pieces
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Figure 5: Bar chart comparing expected and actual values using another example data set



Statistical details

Let’s look at the candy data and the Chi-square test for goodness of fit using statistical terms. This test is also
known as Pearson’s Chi-square test.

Our null hypothesis is that the proportion of flavors in each bag is the same. We have five flavors. The null
hypothesis is written as:

Hy:py=ps=p3 =p4s=Dps
The formula above uses p for the proportion of each flavor. If each 100-piece bag contains equal numbers of pieces
of candy for each of the five flavors, then the bag contains 20 pieces of each flavor. The proportion of each flavor is

20/100 =0.2.

The alternative hypothesis is that at least one of the proportions is different from the others. This is written as:
H, : at least one p; not equal

In some cases, we are not testing for equal proportions. Look again at the example of children's sports teams near
the top of this page. Using that as an example, our null and alternative hypotheses are:

HO tp1 = O.2,p2 = 0.65,p3 =0.15

H, : at least one p; not equal to expected value

Unlike other hypotheses that involve a single population parameter, we cannot use just a formula. We need to use
words as well as symbols to describe our hypotheses.

We calculate the test statistic using the formula below:

(0i—Ey)?

Z?z 1 E;

In the formula above, we have n groups. The E symbol means to add up the calculations for each group. For each

group, we do the same steps as in the candy example. The formula shows O, as the Observed value and E; as the
Expected value for a group.

We then compare the test statistic to a Chi-square value with our chosen significance level (also called the alpha

level) and the degrees of freedom for our data. Using the candy data as an example, we set . = 0.05 and have four
degrees of freedom. For the candy data, the Chi-square value is written as:

2
X“0.05,4



There are two possible results from our comparison:

* The test statistic is lower than the Chi-square value. You fail to reject the hypothesis of equal proportions. You
conclude that the bags of candy across the entire population have the same number of pieces of each flavor in

them. The fit of equal proportions is “good enough.”

* The test statistic is higher than the Chi-Square value. You reject the hypothesis of equal proportions. You cannot
conclude that the bags of candy have the same number of pieces of each flavor. The fit of equal proportions is

“not good enough.”

Let’s use a graph of the Chi-square distribution to better understand the test results. You are checking to see if your
test statistic is a more extreme value in the distribution than the critical value. The distribution below shows a Chi-
square distribution with four degrees of freedom. It shows how the critical value of 9.488 “cuts off” 95% of the data.

Only 5% of the data is greater than 9.488.

Chi-Square Distribution with 4 Degrees of Freedom (df)
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Figure 6: Chi-square distribution for four degrees of freedom

The next distribution plot includes our results. You can see how far out “in the tail” our test statistic is, represented
by the dotted line at 52.75. In fact, with this scale, it looks like the curve is at zero where it intersects with the dotted
line. It isn’t, but it is very, very close to zero. We conclude that it is very unlikely for this situation to happen by
chance. If the true population of bags of candy had equal flavor counts, we would be extremely unlikely to see the
results that we collected from our random sample of 10 bags.



The next distribution plot includes our results. You can see how far out “in the tail” our test statistic is, represented
by the dotted line at 52.75. In fact, with this scale, it looks like the curve is at zero where it intersects with the dotted
line. It isn’t, but it is very, very close to zero. We conclude that it is very unlikely for this situation to happen by
chance. If the true population of bags of candy had equal flavor counts, we would be extremely unlikely to see the
results that we collected from our random sample of 10 bags.
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Figure 7: Chi-square distribution for four degrees of freedom with test statistic plotted

Most statistical software shows the p-value for a test. This is the likelihood of finding a more extreme value for the
test statistic in a similar sample, assuming that the null hypothesis is correct. It’s difficult to calculate the p-value by
hand. For the figure above, if the test statistic is exactly 9.488, then the p-value will be p=0.05. With the test statistic
of 52.75, the p-value is very, very small. In this example, most statistical software will report the p-value as “p <
0.0001” This means that the likelihood of another sample of 10 bags of candy resulting in a more extreme value for
the test statistic is less than one chance in 10,000, assuming our null hypothesis of equal counts of flavors is true.



