| The Paired tTest

What is the paired f-test?

The paired t-test is a method used to test whether the mean difference between pairs of measurements is
Zero or not.

When can I use the test?

You can use the test when your data values are paired measurements. For example, you might have before-
and-after measurements for a group of people. Also, the distribution of differences between the paired
measurements should be normally distributed.

What are some other names for the paired #-test?

The paired t-test is also known as the dependent samples t-test, the paired-difference t-test, the matched
pairs t-test and the repeated-samples t-test.

What if my data isn’t nearly normally distributed?

If your sample sizes are very small, you might not be able to test for normality. You might need to rely on
your understanding of the data. Or, you can perform a nonparametric test that doesn’t assume normality.

Using the paired t-test

The sections below discuss what is needed to perform the test, checking our data, how to perform the test and
statistical details.

What do we need?

For the paired f-test, we need two variables. One variable defines the pairs for the observations. The second
variable is a measurement. Sometimes, we already have the paired differences for the measurement variable.
Other times, we have separate variables for “before” and “after” measurements for each pair and need to calculate
the differences.

We also have an idea, or hypothesis, that the differences between pairs is zero. Here are three examples:

* A group of people with dry skin use a medicated lotion on one arm and a non-medicated lotion on their other
arm. After a week, a doctor measures the redness on each arm. We want to know if the medicated lotion is better
than the non-medicated lotion. We do this by finding out if the arm with medicated lotion has less redness than
the other arm. Since we have pairs of measurements for each person, we find the differences. Then we test if the
mean difference is zero or not.

* We measure weights of people in a program to quit smoking. For each person, we have the weight at the start
and end of the program. We want to know if the mean weight change for people in the program is zero or not.
* An instructor gives students an exam and the next day gives students a different exam on the same material. The

instructor wants to know if the two exams are equally difficult. We calculate the difference in exam scores for
each student. We test if the mean difference is zero or not.



Paired t-test assumptions

To apply the paired t-test to test for differences between paired measurements, the following assumptions need to
hold:

® Subjects must be independent. Measurements for one subject do not affect measurements for any other subject.

® Each of the paired measurements must be obtained from the same subject. For example, the before-and-after
weight for a smoker in the example above must be from the same person.

* The measured differences are normally distributed.
Paired t-test example

An instructor wants to use two exams in her classes next year. This year, she gives both exams to the students. She
wants to know if the exams are equally difficult and wants to check this by looking at the differences between
scores. If the mean difference between scores for students is “close enough” to zero, she will make a practical
conclusion that the exams are equally difficult. Here is the data:

Table 1: Exam scores for each student

Student Exam 1 Score Exam 2 Score Difference
Bob 63 69 6
Nina 65 65 0
Tim 56 62 6
Kate 100 91 -9
Alonzo 88 78 -10
Jose 83 87 s
Nikhil 77 79 2
Julia 92 88 -4
Tohru 90 85 -5
Michael 84 92 8
Jean 68 69 1
Indra 74 81 7
Susan 87 84 -3
Allen 64 75 1
Paul 71 84 13
Edwina 88 82 -6

If you look at the table above, you see that some of the score differences are positive and some are negative. You
might think that the two exams are equally difficult. Other people might disagree. The statistical test gives a
common way to make the decision, so that everyone makes the same decision on the same data.



Checking the data
Let’s start by answering: Is the paired t-test an appropriate method to evaluate the difference in difficulty between
the two exams?

® Subjects are independent. Each student does their own work on the two exams.
® Each of the paired measurements are obtained from the same subject. Each student takes both tests.

* The distribution of differences is normally distributed. For now, we will assume this is true. We will test this
later.

We decide that we have selected a valid analysis method.

Before jumping into the analysis, we should plot the data. The figure below shows a histogram and summary
statistics for the score differences.

v Summary Statistics

Mean 1.3125
Std Dev 7.002083
Std Err Mean 1.7505208
Upper 95% Mean 5.0436467
Lower 95% Mean -2.418647
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Figure I: Histogram and summary statistics for the difference in test scores

From the histogram, we see that there are no very unusual points, or outliers. The data are roughly bell-shaped, so
our idea of a normal distribution for the differences seems reasonable.

From the statistics, we see that the average, or mean, difference is 1.3. Is this “close enough” to zero for the
instructor to decide that the two exams are equally difficult? Or not?

How to perform the paired t-test

We'll further explain the principles underlying the paired t-test in the Statistical Details section below, but let's first
proceed through the steps from beginning to end. We start by calculating our test statistic. To accomplish this, we
need the average difference, the standard deviation of the difference and the sample size. These are shown in
Figure 1 above. (Note that the statistics are rounded to two decimal places below. Software will usually display more
decimal places and use them in calculations.)

The average score difference is:

zq = 1.31

Next, we calculate the standard error for the score difference. The calculation is:

Standard Error = % = 7'—\/% = 7'4& =1.75

In the formula above, nis the number of students — which is the number of differences. The standard deviation of
the differences is s,



We now have the pieces for our test statistic. We calculate our test statistic as:

_ Average difference ;5 0.750
~ Standard Error 175

To make our decision, we compare the test statistic to a value from the t-distribution. This activity involves four
steps:

1. We decide on the risk we are willing to take for declaring a difference when there is not a difference. For the
exam score data, we decide that we are willing to take a 5% risk of saying that the unknown mean exam score
difference is zero when in reality it is not. In statistics-speak, we set the significance level, denoted by «, to 0.05.
It's a good practice to make this decision before collecting the data and before calculating test statistics.

2. We calculate a test statistic. Our test statistic is 0.750.

3. We find the value from the #-distribution. Most statistics books have look-up tables for the distribution. You can
also find tables online. The most likely situation is that you will use software for your analysis and will not use
printed tables.

To find this value, we need the significance level (a = 0.05) and the degrees of freedom. The degrees of freedom
(df) are based on the sample size. For the exam score data, this is:

df =n—1=16 —1=15
The tvalue with « = 0.05 and 15 degrees of freedom is 2.131.

4. We compare the value of our statistic (0.750) to the t value. Because 0.750 < 2.131, we cannot reject our idea that
the mean score difference is zero. We make a practical conclusion to consider exams as equally difficult.

Statistical details
Let’s look at the exam score data and the paired t-test using statistical terms.

Our null hypothesis is that the population mean of the differences is zero. The null hypothesis is written as:
H o - /.l/d —_— O
The alternative hypothesis is that the population mean of the differences is not zero. This is written as:

Ho:ud#o

We calculate the standard error as:

StandardError = L
vn



The formula shows the sample standard deviation of the differences as s, and the sample size as n.

The test statistic is calculated as:

~
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We compare the test statistic to a t value with our chosen alpha value and the degrees of freedom for our data. In
our exam score data example, we set o = 0.05. The degrees of freedom (df) are based on the sample size and are
calculated as:

df =n—1=16—-1=15
Statisticians write the t value with . = 0.05 and 15 degrees of freedom as:

10.05,15

The tvalue with a = 0.05 and 15 degrees of freedom is 2.131. There are two possible results from our comparison:

* The test statistic is lower than the tvalue. You fail to reject the hypothesis that the mean difference is zero. The
practical conclusion made by the instructor is that the two tests are equally difficult. Next year, she can use both
exams and give half the students one exam and half the other exam.

* The test statistic is higher than the tvalue. You reject the hypothesis that the mean difference is zero. The
practical conclusion made by the instructor is that the tests are not of equal difficulty. She must use the same
exam for all students.

Testing for normality
The normality assumption is more important for small sample sizes than for larger sample sizes.

Normal distributions are symmetric, which means they are equal on both sides of the center. Normal distributions
do not have extreme values, or outliers. You can check these two features of a normal distribution with graphs.

Earlier, we decided that the distribution of exam score differences were “close enough” to normal to go ahead with
the assumption of normality. The figure below shows a normal quantile plot for the data and supports our decision.
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Figure 2: Normal quantile plot for exam data



You can also perform a formal test for normality using software. Figure 3 below shows results of testing for
normality with JMP. We test the distribution of the score differences. We cannot reject the hypothesis of a normal
distribution. We can go ahead with the paired t-test.

Goodness-of-Fit Test for Normality
A2 Prob > A2
Anderson-Darling 0.197118  0.8730

Figure 3: Testing for normality in JMP software

What if my data are not from a normal distribution?

If your sample size is very small, it is hard to test for normality. In this situation, you need to use your
understanding of the measurements. For example, for the test scores data, the instructor knows that the underlying
distribution of score differences is normally distributed. Even for a very small sample, the instructor would likely
go ahead with the t-test and assume normality.

What if you know the underlying measurements are not normally distributed? Or what if your sample size is large
and the test for normality is rejected? In this situation, you can use nonparametric analyses. These types of
analyses do not depend on an assumption that the data values are from a specific distribution. For the paired t-test,
anonparametric test is the Wilcoxon signed-rank test.

Understanding p-values

Using a visual, you can check to see if your test statistic is a more extreme value in the distribution. The #-
distribution is similar to a normal distribution. The figure below shows a t-distribution with 15 degrees of freedom.
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Figure 4: t-distribution with 15 degrees of freedom and « = 0.05

Since our test is two-sided and we set a. = 0.05, the figure shows that the value of 2.131 “cuts off” 2.5% of the data in
each of the two tails. Only 5% of the data overall is further out in the tails than 2.131.



Figure 5 shows where our result falls on the graph. You can see that the test statistic (0.75) is not far enough “out in
the tail” to reject the hypothesis of a mean difference of zero.
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Figure 5: Results of t-test — test statistic is smaller than [2.131/

Putting it all together with software

To perform the paired t-test in the real world, you are likely to use software most of the time. The figure below
shows results for the paired t-test for the exam score data using JMP.

Test Mean

Hypothesized Value 0

Actual Estimate 1.3125

DF 15

Std Dev 7.00208
t Test

Test Statistic  0.7498

Prob > |t| 0.4650

Prob >t 0.2325

Prob <t 0.7675

Figure 6: Paired t-test results for exam score data using JMP software

The software shows results for a two-sided test (Prob > [t|) and for one-sided tests. The two-sided test is what we
want. Our null hypothesis is that the mean difference between the paired exam scores is zero. Our alternative
hypothesis is that the mean difference is not equal to zero.

The software shows a p-value of 0.4650 for the two-sided test. This means that the likelihood of seeing a sample
average difference of 1.31 or greater, when the underlying population mean difference is zero, is about 47 chances
out of 100. We feel confident in our decision not to reject the null hypothesis. The instructor can go ahead with her
plan to use both exams next year, and give half the students one exam and half the other exam.



