
DAY 6

Programming the HP-25 — Part II

Where are we?

In preparation for the Day 5 class, you read pp. 73-82, which was an introduction to programming. As
your second assignment, you created a program that solves the problem of finding the direction of Mecca.
This program used both the cos−1 and sin−1 functions (when reading out loud, you say “arc cos” and “arc
sin,” and often these are written as arccos and arcsin, or sometimes acos and asin. Inverse functions often
do not actually have unique values, so one has to be picked. For sin−1 the calculator will always pick a value
between −90◦ and 90◦. The direction of Mecca (as measured from North) may actually be 180◦ minus the
value the calculator gives.

For our next relatively easy program, let’s review the program on pp. 80-82. We have been storing the
initial values that we want to feed a program in registers. This program is a nice example of storing the
initial value for the program in the X and Y locations in the stack.

Part II of Programming

Our programs have so far had no decision points! They always do the same thing. The exception was Nimb,
which you keyed in without really understanding it. It had multiple decision points, including a final decision
to go to “I.LOSE” or “BLISS” depending on who had to make the final move.

As we are taking our programming to the next level, we’ll start with something easy: the R/S key. Then
the PAUSE key. These we will become familiar with together following pp. 83-86 of the manual.

Finally, we get to decision points, which the Hewlett-Packard 25 Owner’s Handbook calls “Branching.”

Unconditional Branching

The types of branching are unconditional branching and conditional branching. Unconditional branching
might not seem terribly useful, because it isn’t really a decision point. It is at its most powerful when used
together with conditional branching, but it is also important on its own.

Conditional Branching

On p. 89, the extremely powerful feature of conditional branching is introduced. Above, it was mentioned
that for sin−1 the calculator will always pick a value between −90◦ and 90◦. The program that HP has
chosen to illustrate conditional branching is directed at that problem.

Preparation for the Next Class

Finish the chapter on Programming (through p. 99 of the Owner’s Handbook). We skipped a couple of
sections (most importantly the section on Statistical), but we will get back to that, and you are now ready
to move on to any application in the Applications Programs book.

Also key in the Moon Landing simulator program and have it ready to go at the beginning of class.
HP’s documentation for the Moon Landing Program is on the next three pages. Make sure that the example
given on the last page works. We are going to play it, and we are going to look at how it uses conditional
branching.

14



52 

CHAPTER 3 GAMES 
MOON LANDING SIMULATOR 

Imagine for a moment the difficulties involved in landing a rocket on the 
moon with a strictly limited fuel supply. You're coming down tail-first, free-
falling toward a hard rock surface. You'll have to ignite your rockets to slow 
your descent ; but if you burn too much too soon, you'll run out of fuel 100 
feet up , and then you'll have nothing to look forward to but cold eternal 
moon dust coming faster every second. The object , clearly, is to space your 
burns just right so that you will alight on the moon's surface with no down-
ward velocity. 

The game starts off with the rocket descending at a velocity of 50 feet/sec 
from a height of 500 feet. The velocity and height are shown in a combined 
display as -50.0500, the height appearing to the right of the decimal point 
and the velocity to the left, with a negative sign on the velocity to indicate 
downward motion. If a velocity is ever displayed with no fractional part , for 
example, -15 ., it means that you have crashed at a speed of 15 feet/sec. In 
game terms, this means that you have lost; in real-life, it signifies an even less 
favorable outcome. 

You will start the game with 120 units of fuel. You may burn as much or as 
little of your available fuel as you wish at each step of your descent; burns of 
zero are quite common. A burn of 5 units will just cancel gravity and hold 
your speed constant. Any burn over 5 will act to change your speed in an 
upward direction. You must take care, however , not to burn more fuel than 
you have; for if you do, no burn at all will take place , and you will free-fall 
to your doom! The final velocity shown will be your impact velocity (general-
ly rather high). You may display your remaining fuel at any time by recalling 
R2 • 

Equations: 
We don't want to get too specific, because that would spoil the fun of the 
game ; but rest assured that the program is solidly based on some old friends 
from Newtonian physics: 

1 
x = xo + Vo t + - ae 

2 
v = Vo + at 

where x, v, a, and t are distance, velocity, acceleration, and time. 

Notes: 

1. If you crash before running out of fuel, the crash velocity shown will be 
the velocity before the burn, rather than the impact velocity. 

2. Use only integer values for burns. Any decimal entry will cause an error 
in the display for V.x. 



Chapter 3 Games 53 

Programming Remarks: 

An interesting feature of this program is the simultaneous display of both 
speed and altitude (V.x), as for example, -50 .0500 . This is accomplished by 
storing the speed V and the altitude X in their normal form (-50.00, 500.00), 
then dividing X by 10,000 (104 ) before combining them. An additional sub-
tlety involves the question of the sign of V, and whether (X/l04) is to be 
added to or subtracted from V. For example, if V = -50 and X = 500, we 
should subtract: V - (X/104 ) , in order to generate a display of -50.0500. But 
if V = 10 and X = 50, we should add: V = V + (X/104 ) in order to display 
10.0050. Inspection of the program listing, lines 2 through 12, will reveal 
how a conditional branch was used to resolve the dilemma. 

DISPLAY KEY X Y Z T COMMENTS REGISTERS 
UNE COOE ENTRY 

00 
01 1411 04 f FI X 4 Four -place display -
02 24 00 RCL 0 X Form display V.X 
03 33 EEX 1. 00 X 
04 04 4 1. 04 X -05 71 X/ 1O· Divide X by 10 .000 
06 24 01 ACL 1 V X/ 1O· 
07 15 4 1 9 x<O V X/ 104 Is V neQative? -08 13 11 GTO 11 V X/ 1O· Yes , branch 
09 5 1 + V + X110· No. add V and X 
10 13 13 GTO 13 V + X/1 04 

11 21 x<!y X/1O· V V< D. add V and - X 
12 4 1 - V _ X/ lO" R 4 -
13 74 R/S V .X V.X is V + IX/ 1O'l 1 -
14 2402 RC L 2 F B Burn B has been input 
15 14 41 f x<y F B Burn > Fuel? R 5 -
16 1334 GTO 34 F B Yes, prepare to crash -
17 22 RI B F No, update A, X, V 
18 23 41 02 STO - 2 B F Subtract burn from fuel RS -
19 05 5 5 B 5 units cancels gravitY -
20 4 1 - B 5 Acceleration - B 5 
21 23 03 STO 3 A R7 _ 
22 02 2 2 A -
23 71 A12 
24 24 00 RCL 0 X A/2 ---- -
25 51 + X + A /2 

2. 24 0 1 RC L 1 V X + A/2 
27 51 + New altitude : 
28 2300 STOO X 

-- -
29 15 41 9 x<a X - - Is X below 9!0und? -
30 13 44 GT044 X Yes, you've crashed 
31 2403 RC L 3 A X No, update V -
32 23510 1 STO + 1 A X _New veloci ty : V <- V + --
33 13 02 GT002 A X Display V.X - --- -
34 2401 RC L 1 V All fuel gone, show _ 
35 1502 g,' V' crash IJA locity as -
3. 24 00 RC L 0 X V ' V '" {V1 + 2gX) 1/2 

37 0 1 1 1 X V' '" gravity '" 5_ 
38 00 0 10 X V' -6 1 , lOX V' -
40 5 1 + V2 + 10 X 

41 1402 ,Fx V -
42 32 CHS V Show crash V down -- - - - - -23 01 43 STO 1 '5- - -
44 2401 RC L 1 Come here from line 
45 14 11 ()() f F IX 0 V Display integer V to _ 
46 1300 GTOOO V show crash .-
47 
48 
49 



54 Chapter 3 Games 

STEP INSTRUCTIONS INPUT KEYS OUTPUT 
DATA/UNITS DATA/UNITS 

1 Key in program c=:Jc=:J c=:Jc=:J 
2 Initialize X 500.00 

V -50.00 
- -

Fuel 120.00 

3 Display initial V.X -50.0500 
-- --

4 Key in burn, compute new speed c=:J c=:Jc=:Jc=:J - - - -. 
and distance Burn V.X. - - - --

c=:J c=:Jc=:Jc=:J 5 Perform step 4 till you land or 
-. f--- -- - - --

c=:J c=:Jc=:Jc=:J crash 
- -- - --- -- - -
6 To see remaining fuel at any c=:J c=:Jc=:Jc=:J - - -- ---

time Fuel 
- r---- --

c=:Jc=:Jc=:Jc=:J 
--

7 To display speed and distance 

at any time V .X 

8 To start a new game, go to step 2. c=:Jc=:Jc=:Jc=:J 

Example: 

500EmJ @] 50. EmJ [I] 120 EmJ m 
!Ill PRGM II R/S .. -50.0500 
o I R/S I -55.0448 
5 I R/S I -55.0393 

(note constant V when burn = 5) 

30 I R/S I -30.0350 

OIR/sl • -35.0318 
o I R/S I • -40.0280 
o I R/S I • -45.0238 
olR/sl -50.0190 
mD m • 85.0000 

(remaining fuel) 
!Ill PRGM IIR/sl-------------.... -50.0190 

(display V.X again) 
10 I R/S -45.0143 

o I R/S I • -50.0095 
mD m 75.0000 
10 I R/S I • -45 .0048 
251 R/S I • -25.0013 
201R/sl -25. 


