Lightning Introduction to the Wolfram

Language and Mathematica Notebooks
January 13,2025

Heads or Tails

Study Sections 1-3 of An Elementary Introduction to the Wolfram Language, 3rd Edition, hereafter
abbreviated E/WL3, before working through this notebook.

The RandomChoice Function

There are many ways to generate heads or tails at random in Mathematica. Here is a one-liner:

in[-1:= RandomChoice [{"H", "T"}]
Out[«]=
T

We are going to use this one-liner a lot and it would not be much work to copy and paste it over and
over, but it would be nice if we saved ourselves a few characters by defining a function:

in[-]- headsOrTails[] := RandomChoice[{"H", "T"}]
Let’s call our new function five times and make a list out of the five results:

in(-1:- {headsOrTails[], headsOrTails[], headsOrTails[], headsOrTails[], headsOrTails[]}
Out[«]=
{T, T, H, T, H}

Counting Heads — 1 Coin Toss

Let’s do a new version of this function that takes a count of the number of heads that have so far
happened as an argument, and adds one to it, but only if the next coin toss is a head:

in[-1:= countHeads[count_] := If[headsOrTails[] == "H", count+1, count]

in[-1:= countHeads [0]
out[«]=
1

https://www.wolfram.com/language/elementary-introduction/3rd-ed/index.html.en
https://www.wolfram.com/language/elementary-introduction/3rd-ed/index.html.en

2 | HeadsOrTails.nb

Counting Heads — 3 Coin Tosses

Here | have nested the function three times:

in[-1:= countHeads [countHeads [countHeads[0]]]

Out[«]=

Counting Heads — 10 Coin Tosses

Here | have nested the function ten times, and used white space (e.g., newlines and indenting) to

make it clearer what is happening:

in[-]:= countHeads [
countHeads [
countHeads |
countHeads [
countHeads [
countHeads [
countHeads |
countHeads [
countHeads [
countHeads [0]

Out[«]=

Counting Heads — 100 Coin Tosses

Mathematica has a function that does exactly this kind of nesting, and it is called Nest. Nest takes
three arguments: the function, the argument to the innermost function call, and the number of

iterations.

in[-1= Nest[countHeads, 0, 100]

Out[«]=
54

HeadsOrTails.nb

Counting Heads — 100 Coin Tosses — Keeping Intermediate Results

You might want more than just the final result. Very handily, another version of Nest, called NestList,
keeps all the intermediate results:

in[-1:= NestList[countHeads, 0, 100]
out[+]=
(¢,0,0,1,1,1,1,2,2,3,3,3,3,3,4,5,5,6,6,7,7,8,9,9,09,
10, 11, 12, 12, 12, 13, 13, 13, 14, 15, 16, 17, 18, 18, 19, 19, 19, 19, 20,
20, 20, 20, 21, 21, 22, 23, 23, 24, 24, 24, 25, 25, 26, 27, 28, 29, 30, 31,
31, 32, 33, 34, 35, 36, 36, 36, 37, 37, 38, 38, 38, 39, 40, 40, 41, 42, 42,
43, 43, 44, 45, 45, 46, 47, 47, 47, 48, 49, 49, 49, 50, 50, 51, 52, 52, 52}

Counting Heads — 1000 Coin Tosses — Keeping Intermediate Results —
Suppressing Display of All but Last Result

Once we get to 1000 coin tosses, we probably don’t want to see all 50 or so lines of output:
in[-1:- lotsaTosses = NestList[countHeads, 0, 1000];

The semi-colon suppresses the display of the output. Perhaps you still want to see the final count
which is the last item in the list:

m[-1- Last[lotsaTosses]

Out[«]=
493

Displaying Heads in 1000 Coin Tosses as a Graph

Displaying all the intermediate results for 1000 coin tosses is well done with a graph:

in[-1= ListPlot[lotsaTosses, PlotRange » {{0, 1000}, {0, 500}}]

Out[«]=
500

300
200

100 -

| 3

