
Lightning Introduction to the Wolfram
Language and Mathematica Notebooks
January 13, 2025

Heads or Tails
Study Sections 1-3 of An Elementary Introduction to the Wolfram Language, 3rd Edition, hereafter
abbreviated EIWL3, before working through this notebook.

The RandomChoice Function

There are many ways to generate heads or tails at random in Mathematica. Here is a one-liner:

In [] := RandomChoice[{"H", "T"}]
Out[]=

T

We are going to use this one-liner a lot and it would not be much work to copy and paste it over and
over, but it would be nice if we saved ourselves a few characters by defining a function:

In [] := headsOrTails[] := RandomChoice[{"H", "T"}]

Let’s call our new function five times and make a list out of the five results:

In [] := {headsOrTails[], headsOrTails[], headsOrTails[], headsOrTails[], headsOrTails[]}
Out[]=

{T, T, H, T, H}

Counting Heads — 1 Coin Toss

Let’s do a new version of this function that takes a count of the number of heads that have so far
happened as an argument, and adds one to it, but only if the next coin toss is a head:

In [] := countHeads[count_] := If[headsOrTails[] ⩵ "H", count + 1, count]

In [] := countHeads[0]
Out[]=

1

https://www.wolfram.com/language/elementary-introduction/3rd-ed/index.html.en
https://www.wolfram.com/language/elementary-introduction/3rd-ed/index.html.en

Counting Heads — 3 Coin Tosses

Here I have nested the function three times:

In [] := countHeads[countHeads[countHeads[0]]]
Out[]=

1

Counting Heads — 10 Coin Tosses

Here I have nested the function ten times, and used white space (e.g., newlines and indenting) to
make it clearer what is happening:

In [] := countHeads[
countHeads[
countHeads[
countHeads[
countHeads[
countHeads[
countHeads[
countHeads[
countHeads[
countHeads[0]

]

]

]

]

]

]

]

]

]

Out[]=

6

Counting Heads — 100 Coin Tosses

Mathematica has a function that does exactly this kind of nesting, and it is called Nest. Nest takes
three arguments: the function, the argument to the innermost function call, and the number of
iterations.

In [] := Nest[countHeads, 0, 100]
Out[]=

54

2 HeadsOrTails.nb

Counting Heads — 100 Coin Tosses — Keeping Intermediate Results

You might want more than just the final result. Very handily, another version of Nest, called NestList,
keeps all the intermediate results:

In [] := NestList[countHeads, 0, 100]
Out[]=

{0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 5, 5, 6, 6, 7, 7, 8, 9, 9, 9,
10, 11, 12, 12, 12, 13, 13, 13, 14, 15, 16, 17, 18, 18, 19, 19, 19, 19, 20,
20, 20, 20, 21, 21, 22, 23, 23, 24, 24, 24, 25, 25, 26, 27, 28, 29, 30, 31,
31, 32, 33, 34, 35, 36, 36, 36, 37, 37, 38, 38, 38, 39, 40, 40, 41, 42, 42,
43, 43, 44, 45, 45, 46, 47, 47, 47, 48, 49, 49, 49, 50, 50, 51, 52, 52, 52}

Counting Heads — 1000 Coin Tosses — Keeping Intermediate Results —
Suppressing Display of All but Last Result

Once we get to 1000 coin tosses, we probably don’t want to see all 50 or so lines of output:

In [] := lotsaTosses = NestList[countHeads, 0, 1000];

The semi-colon suppresses the display of the output. Perhaps you still want to see the final count
which is the last item in the list:

In [] := Last[lotsaTosses]
Out[]=

493

Displaying Heads in 1000 Coin Tosses as a Graph

Displaying all the intermediate results for 1000 coin tosses is well done with a graph:

In [] := ListPlot[lotsaTosses, PlotRange → {{0, 1000}, {0, 500}}]
Out[]=

0 200 400 600 800 1000
0

100

200

300

400

500

HeadsOrTails.nb 3

