
Damped Pendulum — With Animated Graphics
Started in class, February 7, 2025, and finished as Problem Set 6 for February 11.

This is our sixth numerical methods notebook.

Damped Pendulum

Angular Acceleration α
In[362]:=

gravity = 9.80665;
(* the value of gravity in units of meters / seconds-squared *)

length = 0.24840;
(* A pendulum whose length is 9.7795 inches converted to meters *)

(* The natural frequency of such a
pendulum provided the swings are not large: *)

omega0 = Sqrt[gravity/ length];
gamma = 0.03;
(* A real pendulum swinging in air typically has a small gamma. *)

period = 2 Pi/ omega0;
(* The length was chosen so that the period is 1 second. To be *)

(* precise, 2 Pi / omega0 = 0.999989,
and 2 Pi / Sqrt[omega0^2-gamma^2] = 1.000000. *)

α[t_, theta_, omega_] := -omega02 Sin[theta] -2 gamma omega;

Simulation Parameters
In[368]:=

tInitial = 0.0;
tFinal = 50.0;
steps = 200000;
deltaT = (tFinal - tInitial) / steps;

Initial Angle and Angular Velocity

Let’s let the pendulum be initially held still at 10° and gently released:
In[372]:=

thetaInitial = 10 °;
omegaInitial = -gamma thetaInitial;
(* gamma is small, and this is only 0.3° / second. *)

(* Putting in the small initial velocity makes
the approximate theoretical solution simplify. *)

initialConditions = {tInitial, thetaInitial, omegaInitial};

Brian Hill
My solution to PS 6. ~Brian

General Second-Order Runge-Kutta — Damped Pendulum Theory Recap

So you don’t have to flip back to the damped pendulum theory handout, I’ll recapitulate:

t* = t + λΔt

θ* = θ(ti) +ω(ti) · λΔt

ω* = ω(ti) + α(ti, θ(ti), ω(ti)) · λΔt

ti+1 = ti +Δt

ω(ti+1) = ω(ti) + 1- 1
2 λ
 α(ti, θ(ti), ω(ti)) +

1
2 λ

α(t*, θ*, ω*) ·Δt

θ(ti+1) = θ(ti) + (ω(ti) +ω(ti+1))
Δt
2

General Second-Order Runge-Kutta — Implementation

The implementation of the damped pendulum is almost the same as the damped oscillator. You are
just making the replacements x → θ, v → ω, and a→α.

In[375]:=

lambda = 1;

rungeKutta2[cc_] :=

(* Extract time, angle, and angular velocity from the list *)

curTime = cc〚1〛;
curAngle = cc〚2〛;
curAngularVelocity = cc〚3〛;
(* Compute tStar, xStar, vStar *)

tStar = curTime + lambda deltaT;
thetaStar = curAngle + curAngularVelocity lambda deltaT;
omegaStar =

curAngularVelocity + α[curTime, curAngle, curAngularVelocity] lambda deltaT;
(* Implement General Second-Order Runge-Kutta *)

newTime = curTime + deltaT;
newAngularVelocity =

curAngularVelocity + 1 -
1

2 lambda
α[curTime, curAngle, curAngularVelocity] +

1

2 lambda
α[tStar, thetaStar, omegaStar] deltaT;

newAngle = curAngle + (curAngularVelocity + newAngularVelocity) deltaT/ 2;
{newTime, newAngle, newAngularVelocity}

2 Brian-PS06.nb

Displaying The Angle as a Function of Time

Nest the procedure, transpose the results, and produce a plot of the angle θ as a function of time:
In[377]:=

rk2Results = NestList[rungeKutta2, initialConditions, steps];
rk2ResultsTransposed = Transpose[rk2Results];
times = rk2ResultsTransposed〚1〛;
thetas = rk2ResultsTransposed〚2〛;
thetaPlot = ListPlot[Transpose[{times, thetas}]];
(* the theoretical solution is approximately known,
provided the angle remains small *)

(* let's plot the envelope of the theoretical solution *)

envelopeFunction[t_] := thetaInitial Exp[-gamma t]
approximateTheoreticalEnvelope =

Plot[{envelopeFunction[t], -envelopeFunction[t]}, {t, tInitial, tFinal}];
Show[{thetaPlot, approximateTheoreticalEnvelope}]

Out[383]=

10 20 30 40 50

-0.15

-0.10

-0.05

0.05

0.10

0.15

In the preceding plot, the theoretical solution is approximately known, provided the angle remains
small, and so I added the envelope of the theoretical solution to the plot.

Brian-PS06.nb 3

Displaying Approximate Theoretical Solution

In the following plot, I have included the theoretical oscillation, not just the envelope (but the same
approximation that the angle must remain small still applies):

In[384]:=

approximateTheoreticalSolutionPlot =

PlotenvelopeFunction[t], -envelopeFunction[t],

envelopeFunction[t] × CosSqrtomega02 - gamma2 t, {t, tInitial, tFinal};

In[385]:=

Show[{thetaPlot, approximateTheoreticalSolutionPlot}]
Out[385]=

10 20 30 40 50

-0.15

-0.10

-0.05

0.05

0.10

0.15

Drawing a Pendulum with Coordinates and Graphics

To do a legible job of this, you may need to review Section 14 of EIWL3.
In[386]:=

pendulumGraphic[angle_] := Graphics[{
EdgeForm[Thin], White,
RegularPolygon[{0.0, 0.0}, 0.4, 4],
Black,
Circle[{0, 0}, length],
Point[{0, 0}],
Line[{{0, 0}, length { Sin[angle], - Cos[angle]}}],
PointSize[0.03], Purple, (* The PointSize and
Purple directives affects any remaining items in the list. *)

Point[length { Sin[angle], - Cos[angle]}]
}]

4 Brian-PS06.nb

Animating the Graphics

It’s also nice to have an animation, arranged so that the default duration of the animation is the actual
duration of the animation:

In[387]:=

Animate[pendulumGraphic[thetas〚step〛],
{step, 0, steps, 1}, DefaultDuration → tFinal - tInitial]

Out[387]=

step

Brian-PS06.nb 5

