My solution to PS 6. ~Brian

Damped Pendulum — With Animated Graphics

Started in class, February 7, 2025, and finished as Problem Set 6 for February 11.
This is our sixth numerical methods notebook.

Damped Pendulum

Angular Acceleration a
In[362]:=
gravity = 9.80665;
(* the value of gravity in units of meters / seconds-squared %)
length = 0.24840;
(* A pendulum whose length 1is 9.7795 {inches converted to meters)
(* The natural frequency of such a
pendulum provided the swings are not large: %)
omegal = Sqrt[gravity/ length];
gamma = 0.03;
(* A real pendulum swinging in air typically has a small gamma. =)
period = 2 P1i/omega0;
(* The length was chosen so that the period is 1 second. To be x)
(* precise, 2 Pi / omega® = 0.999989,
and 2 Pi / Sqrt[omega@”r2-gamma’r2] = 1.000000. =*)

a[t_, theta_, omega] := -omega®” Sin[theta] -2 gamma omega;

Simulation Parameters
In[368]:=
tInitial = 0.0;
tFinal = 50.0;
steps =200000;
deltaT = (tFinal - tInitial) / steps;

Initial Angle and Angular Velocity

Let’s let the pendulum be initially held still at 10° and gently released:
In[372]:=

thetaInitial =10 °;

omegaInitial = -gamma thetaInitial;

(+ gamma is small, and this is only 0.3° / second. %)

(* Putting in the small 1initial velocity makes

the approximate theoretical solution simplify. x)

initialConditions = {tInitial, thetaInitial, omegaInitialy};

Brian Hill
My solution to PS 6. ~Brian

2 Brian-PS06.nb

General Second-Order Runge-Kutta — Damped Pendulum Theory Recap

So you don’t have to flip back to the damped pendulum theory handout, I’ll recapitulate:
t"=t+AAL

6" = O(t;) + w(t;) - AAL

w™ = w(ty) + a(t;, (L), w(t;)) - AAt

ti,, =t +At

w(ting) = w(t) + ((1-) alt;, 6(t), w(t) + 5 alt', 6%, w"))-At

B(ti1) = 6(t;) + (W(t;) + witin1) 5

General Second-Order Runge-Kutta — Implementation

The implementation of the damped pendulum is almost the same as the damped oscillator. You are
just making the replacements x » 6,v—> w,and a - a.

In[375]:=
lambda = 1;

rungeKutta2[cc_] :=

(» Extract time, angle, and angular velocity from the list x)
curTime = cc[[1];
curAngle = cc[[2];
curAngularVelocity = cc[3];
(» Compute tStar, xStar, vStar =)
tStar = curTime + lambda deltaT;
thetaStar = curAngle + curAngularVelocity lambda deltaT;
omegaStar =
curAngularVelocity + a[curTime, curAngle, curAngularVelocity] lambda deltaT;
(* Implement General Second-Order Runge-Kutta =)
newTime = curTime + deltaT;

newAngularVelocity =

1

curAngularVelocity + ((1 -) a[curTime, curAngle, curAngularVelocity] +

2 lambda

———— a[tStar, thetaStar, omegaStar]) deltaT;
2 lambda

newAngle = curAngle + (curAngularVelocity + newAngularVelocity) deltaT/2;

{newTime, newAngle, newAngularVelocity}

)

Brian-PS06.nb | 3

Displaying The Angle as a Function of Time

Nest the procedure, transpose the results, and produce a plot of the angle 6 as a function of time:
In[377]:=

rk2Results = NestList[rungeKutta2, initialConditions, steps];

rk2ResultsTransposed = Transpose[rk2Results];

times = rk2ResultsTransposed[1];

thetas = rk2ResultsTransposed[2];

thetaPlot = ListPlot[Transpose[{times, thetas}]];

(* the theoretical solution is approximately known,

provided the angle remains small x)

(» let's plot the envelope of the theoretical solution x)

envelopeFunction[t_] := thetaInitial Exp[-gamma t]

approximateTheoreticalEnvelope =

Plot[{envelopeFunction[t], -envelopeFunction[t]}, {t, tInitial, tFinal}];
Show[{thetaPlot, approximateTheoreticalEnvelope}]

out[383]=

10 20 30 40 50

-0.05

-0.10

-0.15

In the preceding plot, the theoretical solution is approximately known, provided the angle remains
small, and so | added the envelope of the theoretical solution to the plot.

4q Brian-PS06.nb

In[384]:=

In[385]:=

out[385]=

In[386]:=

Displaying Approximate Theoretical Solution

In the following plot, | have included the theoretical oscillation, not just the envelope (but the same
approximation that the angle must remain small still applies):

approximateTheoreticalSolutionPlot =
Plot[{envelopeFunction[t], -envelopeFunction[t],

envelopeFunction[t] - Cos[Sqrt[omega6® - gamma’] t]}, {t, tInitial, tFinal}];

Show[{thetaPlot, approximateTheoreticalSolutionPlot}]

0.15

AR -
A

-0.05 J

~0.10};

-0.15

LIS

Drawing a Pendulum with Coordinates and Graphics

To do a legible job of this, you may need to review Section 14 of E/WL3.

pendulumGraphic[angle_] := Graphics|[{

EdgeForm[Thin], White,

RegularPolygon[{0.0, 0.0}, 0.4, 4],

Black,

Circle[{0, 0}, length],

Point[{0, 0}],

Line[{{0, 0}, length { Sin[angle], - Cos[angle]}}],
PointSize[0.03], Purple, (* The PointSize and

Purple directives affects any remaining items in the list. x)

Point[length { Sin[angle], - Cos[angle]}]
1

Brian-PS06.nb | 5

Animating the Graphics

It’s also nice to have an animation, arranged so that the default duration of the animation is the actual
duration of the animation:
In[387]:=
Animate[pendulumGraphic[thetas[step]],
{step, 0, steps, 1}, DefaultDuration - tFinal - tInitial]

out[387]=

s (] 1l Alyl =l

