
Bohr and Wheeler’s Model of Fission

The 1939 Paper
By 1939, fission had become experimentally established. However, a theoretical model of what was 
happening to the nucleus was lacking. Neils Bohr and John A. Wheeler, did the simplest model they 
could come up with. They modeled the nucleus as a charged droplet, paying no attention to quantum 
mechanics, or what the drop was made of, except that it had a certain amount of charge and a certain 
volume. Here is their abstract:

Full PDF: https://www.pugetsound.edu/sites/default/files/file/7579_Bohr%20liquid%20drop_0.pdf

Amazingly, despite the fact that people were realizing that fission was potentially a weapon, this paper 
was published openly on September 1, 1939, at the same time as Hitler invaded Poland. Slightly less 
than five years later on July 16, 1944, the first fission explosion called Trinity was done at Alamogordo, 
NM. For more information, consult https://www.afnwc.af.mil/About-Us/History/Trinity-Nuclear-Test/.

Legendre Polynomials 
In Fig. 2, Bohr and Wheeler show how adding small contributions of these modes leads to different 
nuclear shapes, from nearly spherical to necked (on the verge of fission). The figure makes this progres-
sion visual: small oscillations → necking → binary division. To illustrate the question of what’s happen-
ing in between these states, we have to ask what is the mathematical model. 



In Fig.2, the shape deformations Wheeler and Bohr use are described with Legendre polynomials. The 
formula is below, however, we’re not going to go into detail just yet. Instead, we’re going to first focus 
on Pn which represents a Legendre of degree n before talking about the formula. 

 r(θ) = R[1 + ∑αn Pn(cosθ)]
 

In [ ] := {Labeled[PolarPlot[LegendreP[0, Cos[θ]], {θ, 0, 2 π}], "P₀(cos θ)", Top],
Labeled[PolarPlot[LegendreP[1, Cos[θ]], {θ, 0, 2 π}], "P₁(cos θ)", Top],
Labeled[PolarPlot[LegendreP[2, Cos[θ]], {θ, 0, 2 π}], "P₂(cos θ)", Top]}

Out[ ]=
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

Legendre polynomials are great at describing smooth, symmetric shapes—like spheres and small 
deformations of spheres. In general, these polynomials show up whenever you’re dealing with prob-
lems that have spherical symmetry, like gravitational fields, electric potentials, and in this case, nuclear 
shapes. In the liquid drop model, we use them to describe how a nucleus deviates from a perfect 
sphere as it starts to deform. Each polynomial, labeled Pₙ(cos θ), represents a different mode of defor-
mation. For more information see here: https://physics.uwo.ca/~cottam/NucP-notesB.pdf

P₀ is just a constant—it gives you a perfect sphere.
P₁ corresponds to shifting the whole nucleus in space, so we usually leave it out since we’re only 
interested in shape.
P₂ is the most important—it describes an elongation, like the nucleus stretching into a football shape or 
flattening out.
P₃ and higher terms describe more complex distortions, like pear shapes or bulges forming along the 
sides.
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In [ ] := {Labeled[PolarPlot[LegendreP[3, Cos[θ]], {θ, 0, 2 π}], "P3(cos θ)", Top],
Labeled[PolarPlot[LegendreP[5, Cos[θ]], {θ, 0, 2 π}], "P5(cos θ)", Top],
Labeled[PolarPlot[LegendreP[9, Cos[θ]], {θ, 0, 2 π}], "P9(cos θ)", Top]}

Out[ ]=
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

In most cases, only the first few terms matter—especially P₂—because they capture the most significant 
shape changes. The higher-order terms do add more detail, but unless the nucleus is really unstable or 
highly excited, they don’t affect the overall picture much. That’s why this expansion is so useful: it gives 
us a smooth, mathematical way to track how a nucleus stretches and changes shape, just by tweaking 
a few parameters. But in practice, we usually focus on just the first two or three terms—P₂ and P₃—
because those capture the most physically relevant deformations without over complicating the 
model. They’re enough to see how a nucleus stretches and becomes unstable, while still keeping the 
math manageable.

The 2-D Model
Instead of tracking every particle, we model the radius of the nucleus as a smooth function of angle: 
Small deviations from a sphere can be described as:

r(θ) = R[1 + ∑αn Pn(cosθ)]

R is the average radius
αn are the deformation ampiltudes (This is only valid when α ≪1 small deviations from spherical shape).
Pn (cosθ) are Legendre polynomials

Let’s define this crucial formula in Mathematica. Here is a 2D model of the LDM using only n of 2 and 4. 
The orange circle is our model and the blue circle is a constant sphere:
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In [ ] := {Animate[Module[{r = 1, alpha2 = 0.5, alpha4 = 0.15},
PolarPlot[{r, r (1 + alpha2 LegendreP[2, Cos[θ]] Sin[2 Pi t] -

alpha4 LegendreP[4, Cos[θ]] Sin[4 Pi t])},
{θ, 0, 2 Pi}, PlotRange → {{-2, 2}, {-2, 2}}]], {t, 0, 1}]}

Out[ ]=
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

A 3-D Model
Now we will jack up the realistic of the model, by making it a three-dimensional drop, using Spherical-
Plot3D. I used 
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In [ ] := Animate[Module[{r0 = 1, α2 = 0.5, α4 = 0.3}, SphericalPlot3D[
r0 (1 + α2 LegendreP[2, Cos[θ]] Sin[2 Pi t] + α4 LegendreP[4, Cos[θ]] Sin[4 Pi t]),
{θ, 0, Pi}, {ϕ, 0, 2 Pi}, Boxed → False, Axes → False, Mesh → None]], {t, 0, .3}]

Out[ ]=

t

The Model Results
As we move from a 3D visualization, we can ask: How do the parameters 𝛼2 and 𝛼4 affect the shape of 
the nucleus? Why do these specific parameters matter, especially when considering nuclear fission?

To figure it out let’s test two 𝛼2 and 𝛼4 pairs, keeping one of them at 0: 
α₂    α₄  
0.3   0.0 
0.0   0.3 
0.3.  0.3
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In [ ] := {Animate[Module[{r = 1, alpha2 = 0.3, alpha4 = 0.0},
PolarPlot[{r, r (1 + alpha2 LegendreP[2, Cos[θ]] Sin[2 Pi t] -

alpha4 LegendreP[4, Cos[θ]] Sin[4 Pi t])},
{θ, 0, 2 Pi}, PlotRange → {{-2, 2}, {-2, 2}}]], {t, 0, 1}],

Animate[Module[{r = 1, alpha2 = 0.0, alpha4 = 0.3},
PolarPlot[{r, r (1 + alpha2 LegendreP[2, Cos[θ]] Sin[2 Pi t] -

alpha4 LegendreP[4, Cos[θ]] Sin[4 Pi t])},
{θ, 0, 2 Pi}, PlotRange → {{-2, 2}, {-2, 2}}]], {t, 0, 1}],

Animate[Module[{r = 1, alpha2 = 0.3, alpha4 = 0.3},
PolarPlot[{r, r (1 + alpha2 LegendreP[2, Cos[θ]] Sin[2 Pi t] -

alpha4 LegendreP[4, Cos[θ]] Sin[4 Pi t])},
{θ, 0, 2 Pi}, PlotRange → {{-2, 2}, {-2, 2}}]], {t, 0, 1}]} // Row

Out[ ]=
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If you squeeze a sphere along one axis (say the top and bottom) so that it becomes flattened, that’s an 
example of a quadrupole shape. Now, imagine you stretch the nucleus even more in a weird way, so 
that it starts to have more complicated bumps and dents. This is the hexadecapole moment. It tells us 
about even finer details.

The parameters α₂ and α₄ ​ control different nuclear deformations. α₂ represents the quadrupole mode, 
which stretches the nucleus into a dumbbell shape.  α₄ represents the hexadecapole mode, creating a 
four-lobed structure. Together, they model how a nucleus deforms, with α₂ elongating it and α₄ adding 
complexity, both of which are key in simulating nuclear fission.

Let’s try some more, exploring this combined quadrupole + hexadecapole interaction.
α₂    α₄  
0.3   0.3 
0.6    0.6
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0.3   0.3 
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In [ ] := {Animate[Module[{r = 1, alpha2 = 0.3, alpha4 = 0.3},
PolarPlot[{r, r (1 + alpha2 LegendreP[2, Cos[θ]] Sin[2 Pi t ] -

alpha4 LegendreP[4, Cos[θ]] Sin[4 Pi t])}, {θ, 0, 2 Pi},
PlotRange → {{-2, 2}, {-2, 2}}]], {t, 0, .7, AnimationRepetitions → 1}],

Animate[Module[{r = 1, alpha2 = 0.6, alpha4 = 0.6},
PolarPlot[{r, r (1 + alpha2 LegendreP[2, Cos[θ]] Sin[2 Pi t] -

alpha4 LegendreP[4, Cos[θ]] Sin[4 Pi t])},
{θ, 0, 2 Pi}, PlotRange → {{-2, 2}, {-2, 2}}]],

{t, 0, .7, AnimationRepetitions → 1}]} // Row
(*This time because of the use of the Sin multiplier we ran the animation
to .7 seconds and we ran it only once using AnimationRepetitions*)
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Out[ ]=
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In the first example, the nucleus is narrowing as it deforms, but has yet to split into 2 fragments. This is 
option b of Fig 2, or necking which leads to fission. However in the second example, the nucleus is more 
unstable, and follows similar movements to the first example, but this time it splits. 

These fission parameters describe how this deformation progresses, with critical necking marking the 
point when the nucleus can no longer hold together. 

10     LiquidDropModelOfFission.nb



In the first example, the nucleus is narrowing as it deforms, but has yet to split into 2 fragments. This is 
option b of Fig 2, or necking which leads to fission. However in the second example, the nucleus is more 
unstable, and follows similar movements to the first example, but this time it splits. 

These fission parameters describe how this deformation progresses, with critical necking marking the 
point when the nucleus can no longer hold together. 

In fact, after many  α₂ and α₄ combinations, binary fission occurs when the magnitude of the nuclear 
shape is equal or greater than 0.6. And as shown The magnitude or “deformation” of a nuclear shape is 
defined below: 

√𝛼2
2 + 𝛼4

2)
​
The reason is that if we consider 𝛼2 and 𝛼4 as coordinates for the shape of the nucleus, each point 
(𝛼2, 𝛼4) in the plane corresponds to a particular deformation of the nucleus. By calculating the square 
root of the sum of their squares, we can find the radial distance from the origin (where 𝛼2 = 0 and 
𝛼4 = 0). The idea here is that nuclear deformation behavior can be characterized by how far the shape is 
from a “spherical” or stable state. A smaller distance means less deformation (stable), and a larger 
distance means more deformation (unstable or fission).

By analyzing this model there’s three possibilities: 
1) Stable   – when  √𝛼2

2 + 𝛼4
2 (aka deformation) < 0.3 , the nucleus is stable.

2) Necking  – If 0.3 ≤ deformation < 0.6, the nucleus is nearing fission (splitting).
3) Unstable (fission) – when the deformation ≥ 6, the nucleus is unstable and likely to undergo fission.

Let’s plot that!

I used a CounterPlot where I plotted the deformation with 𝛼2 and 𝛼4 range from 0 to 0.8. The pure 
function plugs in the value of the deformation. The ColorFunction defines a color based on that value. 
The color of each region is determined by an If statement: light blue for stable regions, orange for 
necking , and red for unstable regions. Contours just defines where to draw the lines.
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In [ ] := ContourPlotSqrt[a2^2 + a4^2], {a2, 0, 0.8}, {a4, 0, 0.8}, Contours → {0.3, 0.6},

ColorFunction → (If[# < 0.3, LightBlue, If[# < 0.6, Orange, Red]] &),
FrameLabel → {"a₂", "a₄"},

PlotLabel → "Deformation Contour Plot (√(a₂² + a₄²))", GridLines → Automatic

Out[ ]=

Comparison with Experiment
Next, we’ll dive into a comparison between the theoretical predictions and the experimental results 
presented in this paper, and see how well the model holds up when applied to actual data from fission 
experiments.

The paper “Nuclear fission: a review of experimental advances and phenomenology” by A.N. Andreyev 
is a review of experimental progress in nuclear fission research from the mid-1990s to 2017. You can 
view the article by putting this link into SciHub: https://iopscience.iop.org/arti-
cle/10.1088/1361-6633/aa82eb. 

In the paper, it talks about the limits of the liquid drop model. Specifically, according to LDM, most 
heavy nuclei should break up evenly, creating two fragments of roughly the same mass. But that’s not 
what really happens. Experiments have shown that fission usually doesn’t split a nucleus evenly. 
Instead, it often breaks into unequal parts. This review focuses on how scientists discovered that this 
odd behavior is due to quantum effects that the LDM doesn’t take into account. Specifically, it’s the 
shell effects (a stability that arises when certain numbers of protons or neutrons are present) that push 
the system toward breaking unevenly. This is similar to how noble gases are stable because of filled 
electron shells; certain “magic numbers” of neutrons and protons make nuclei more stable, affecting 
how they split during fission.

Here is a figure and excerpt of this paper that show the theoretical (LDM only) vs experimental model 
(LDM and shell interaction) of 238U nucleus. Highlighted sections of the excerpt shows where the 
limits of the LDM model lies in. 

One of the most important examples discussed is the beta-delayed fission of 180Hg, studied at CERN. 
This experiment found that 180Hg fissions asymmetrically, which is completely unexpected according 
to LDM — it should have split symmetrically. The result sparked a lot of excitement because it showed a 
new asymmetric fission mode in a region (lead-to-mercury) that hadn’t been explored much before. 

Here is another figure from the same paper. It plots the elements on an axis of proton (y-axis) and 
neutron (x-axis) number. It then shows the degree of symmetric and asymmetric byproducts from 
fission. As you can see that the LDM does well in predicting the majority of elements here, however 
there are outliers in heavy elements or certain isotopes. 
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Bonus
Here is some cool images from a paper that studies liquid jets. I stumbled across it by accident but 
found the images really compelling. Again, I’m no physicist. But it’s interesting that there is a degree of 
asymmetry in liquid jets, and it makes me ask if Bohr’s and Wheeler’s model was not too off. You can 
find that liquid jets paper here: https://www.irphe.fr/~fragmix/publis/EV2008.pdf

This is a timelapse from 0 to 60 ms of a 5mm water drop falling in a stream of air.

This is a binary collision of drops (which it seems like they dyed). Which is cool. I’m not sure if there’s a 
field in fusion that uses a similar idea.  

This one is funny. It’s mayonnaise pushed out of a nozzle of a radius of 3mm. It too is a time lapse.
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