
Lotke-Volterra Equations: Population
Models in Mathematica

Developed in the 1930s, the Lotke-Volterra Equations are a system of Ordinary Differential Equations
(ODE) commonly used to model populations of species that are interacting with each other in a particu-
lar ecological environment. The most simple set of these are the Predator-Prey model, which is as
follows:

x′(t)  α* x(t) - β * x(t) * y(t)
y′(t)  -γ * y(t) + δ * x(t) * y(t)

where x(t) represents the prey population as a function of time, and y(t) performs a similar role for the
predator.
α is the prey growth rate, β is the effect of predator presence on prey, γ is predator death rate and δ is
the effect of prey presence on predators.

In Mathematica these equations can be implemented as such:

In[42]:= (*We implement the parameters shown above first*)
a = 0.5(*prey growth rate*);
b = 1(*predator effect on prey*);
c = 1(*predator death rate*);
d = 1(*prey effect on predator*);

preyInitialPopulation = 4;
predatorInitialPopulation = 2;

duration = 100;

In[49]:= (*Then we can program the equations themselves*)

In[50]:= predatorPreyEqns = {x'[t] ⩵ a* x[t] - b* x[t] * y[t], y'[t] ⩵ -c* y[t] + d* x[t] * y[t],
x[0] ⩵ preyInitialPopulation, y[0] ⩵ predatorInitialPopulation}

Out[50]=

{x′[t] ⩵ 0.5 x[t] - x[t] × y[t], y′[t] ⩵ -y[t] + x[t] × y[t], x[0] ⩵ 4, y[0] ⩵ 2}

Unfortunately the Lotke-Volterra Equations don’t have algebraic solutions—the best we can do is
numerical analysis using NDSolve[].

In[51]:= predatorPreySol = NDSolve[predatorPreyEqns, {x, y}, {t, 0, duration}]
Out[51]=

x → InterpolatingFunction Domain: {{0., 100.}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 100.}}
Output: scalar 

And then we can plot the solution.

In[52]:= Plot[Evaluate[{x[t], y[t]} /. predatorPreySol],
{t, 0, duration}, PlotRange → All, PlotLabels → {"Prey", "Predator"}]

Out[52]=

The next level of complexity arises when we introduce the concept of carrying capacity—which refers to
the maximum population a species can take on in the environment before overpopulation begins to
decrease the number of individuals. The system (known as the Lotke-Volterra Competitive Equations)
becomes this:

x′(t)  r1 * x(t) * 1- x[t]+α12 y[t]
k1



y′(t)  r2 * y(t) * 1- y[t]+α21 x[t]
k2



where ri and ki refer to growth and carrying capacity respectively, and αi, j is now redefined as the effect
species j has on species i (in this case, x is 1 and y is 2).

2 LotkeVolterraEquations.nb

In[53]:= (*Parameter implementation*)
r1 = 0.2;
k1 = 100;
r2 = 0.5;
k2 = 100;
α12 = 0.1;
α21 = 0.1;
xInit = 4;
yInit = 2;

In[61]:= compEqns = x'[t] ⩵ r1 * x[t] * 1 -
x[t] + α12* y[t]

k1
,

y'[t] ⩵ r2* y[t] * 1 -
y[t] + α21* x[t]

k2
, x[0] ⩵ xInit, y[0] ⩵ yInit

Out[61]=

x′[t] ⩵ 0.2 x[t] 1 +
1

100
(-x[t] - 0.1 y[t]) ,

y′[t] ⩵ 0.5 1 +
1

100
(-0.1 x[t] - y[t]) y[t], x[0] ⩵ 4, y[0] ⩵ 2

In[62]:= compSol = NDSolve[compEqns, {x, y}, {t, 0, duration}]
Out[62]=

x → InterpolatingFunction Domain: {{0., 100.}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 100.}}
Output: scalar 

In[63]:= Plot[Evaluate[{x[t], y[t]} /. compSol], {t, 0, duration},
PlotRange → All, PlotLabels → {"Prey", "Predator"}]

Out[63]=

The ultimate system utilised are the Generalised Lotke-Volterra Equations, which can model n number
of species. This is done using the generalised formula:

xi′(t)  (ri + A) x

here A represents a matrix of interactions between various species. Each row of the matrix has 3 inputs,
{effect of species a on species b, effect of species b on species a, and effect of species a on itself}. An
example with three species is implemented below.

LotkeVolterraEquations.nb 3

The ultimate system utilised are the Generalised Lotke-Volterra Equations, which can model n number
of species. This is done using the generalised formula:

xi′(t)  (ri + A) x

here A represents a matrix of interactions between various species. Each row of the matrix has 3 inputs,
{effect of species a on species b, effect of species b on species a, and effect of species a on itself}. An
example with three species is implemented below.

In[64]:=

identities = {x, y, z};
growthRates = {3, 4, 7.2};
initials = {0.1, 0.8, 0.3};
interactionMatrix = {{-0.5, -1, 0}, {0, -1, -2}, {-2.6, -1.6, -3}} ;
(*Creating the interaction matrix*)
Grid[interactionMatrix] (*Visualisation*)

Out[68]=
-0.5 -1 0
0 -1 -2

-2.6 -1.6 -3

In[69]:= n = 3;
system = Table[Flatten[{identities〚i〛'[t] ⩵ (growthRates〚i〛 +

Total[Table[interactionMatrix〚i〛〚j〛 * identities〚j〛[t], {j, n}]]) *

identities〚i〛[t], identities〚i〛'[0] ⩵ initials〚i〛}], {i, n}];
(*Generating a system of equations from the parameters*)
Column[system]

Out[71]=
{x′[t] ⩵ x[t] (3 - 0.5 x[t] - y[t]), x′[0] ⩵ 0.1}
{y′[t] ⩵ y[t] (4 - y[t] - 2 z[t]), y′[0] ⩵ 0.8}
{z′[t] ⩵ (7.2 - 2.6 x[t] - 1.6 y[t] - 3 z[t]) z[t], z′[0] ⩵ 0.3}

In[72]:= genEq = Flatten[system]
Out[72]=

{x′[t] ⩵ x[t] (3 - 0.5 x[t] - y[t]), x′[0] ⩵ 0.1, y′[t] ⩵ y[t] (4 - y[t] - 2 z[t]),
y′[0] ⩵ 0.8, z′[t] ⩵ (7.2 - 2.6 x[t] - 1.6 y[t] - 3 z[t]) z[t], z′[0] ⩵ 0.3}

In[73]:= genSol = NDSolve[genEq, identities, {t, 0, duration}]
Out[73]=

x → InterpolatingFunction Domain: {{0., 100.}}
Output: scalar ,

y → InterpolatingFunction Domain: {{0., 100.}}
Output: scalar ,

z → InterpolatingFunction Domain: {{0., 100.}}
Output: scalar 

4 LotkeVolterraEquations.nb

In[74]:= Plot[Evaluate[{x[t], y[t], z[t]} /. genSol],
{t, 0, duration}, PlotLabels → {"x", "y", "z"}]

Out[74]=

LotkeVolterraEquations.nb 5

