Lotke-Volterra Equations: Population
Models in Mathematica
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Developed in the 1930s, the Lotke-Volterra Equations are a system of Ordinary Differential Equations
(ODE) commonly used to model populations of species that are interacting with each other in a particu-
lar ecological environment. The most simple set of these are the Predator-Prey model, which is as
follows:

X'(t) = axx(t) - B*x(t)* y(t)
Y(t) ==y *y(t)+ 6+ x(t) x y(t)

where x(t) represents the prey population as a function of time, and y(t) performs a similar role for the
predator.

ais the prey growth rate, Bis the effect of predator presence on prey, y is predator death rate and dis
the effect of prey presence on predators.

In Mathematica these equations can be implemented as such:

(*We implement the parameters shown above firstx)
a=0.5(xprey growth ratex);
b = 1 (xpredator effect on preyx);

c
d

1 (xpredator death ratex);
1(xprey effect on predatorx);

preyInitialPopulation = 4;

predatorInitialPopulation = 2;

duration = 100;

(*Then we can program the equations themselvesx)

predatorPreyEqns = {x'[t] ==a*Xx[t] -b*x[t] *y[t], Y'[t] = -c* y[t] +d* x[t]* y[t],
x[0] == preyInitialPopulation, y[0] == predatorInitialPopulation}

{x'[t] =0.5x[t] -x[t] y[t], y'[t] =-y[t] +x[t] y[t], x[0] =4, y[0] =2}

Unfortunately the Lotke-Volterra Equations don’t have algebraic solutions—the best we can do is
numerical analysis using NDSolve[].
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predatorPreySol = NDSolve[predatorPreyEqns, {x, y}, {t, 0, duration}]

Hx - InterpolatingFunction [ I (e U] ]

Output: scalar ’

y - InterpolatingFunction [ Domain: {{0., 100.}} ] }}

Output: scalar

And then we can plot the solution.

Plot[Evaluate[{x[t], y[t]} /. predatorPreySol],
{t, 0, duration}, PlotRange -» All, PlotLabels » {"Prey", "Predator"}]
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The next level of complexity arises when we introduce the concept of carrying capacity—which refers to
the maximum population a species can take on in the environment before overpopulation begins to
decrease the number of individuals. The system (known as the Lotke-Volterra Competitive Equations)
becomes this:

x(t)= rl*x(t)*(l_ M)

1
Y (0) = rxy(t)(1- M)

where r; and k; refer to growth and carrying capacity respectively, and a; ; is now redefined as the effect
species j has on species i (in this case, x is 1 and y is 2).
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inis3l= (*Parameter implementationx)
rl=0.2;
kl = 100;
r2=0.5;
k2 = 100;
al2 =0.1;
a2l =0.1;
xInit = 4;
yInit = 2;

X[t] +al2 xy[t] )
b

infe1]:= compEqgns = {x "[t] = rlxx[t] * (1 - ”
1

y[t] + a2l % x[t]
k2

y'[t] = r2xy[t] % (1- ], x[0] = xInit, y[0] = yIm‘t}

out[61]=

1

{x’[t} —- 0.2 x[t] [1+ (—x[t}—@.ly[t})),

100

y'[t] = 0.5 [1+ (-0.1x[t] —y[t])] yitl, x(0] =4, y[0] = 2|

100
inle2l:- compSol = NDSolve [compEqns, {x, Y}, {t, 0, duration}]
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Domain: {{0., 100.}} ]

{{X - InterpolatingFunction { Output: scalar

y » InterpolatingFunction [ ’L gi?;'g!igi;:oo’}} J }}

inlesl:- Plot[Evaluate[{x[t], y[t]} /. compSol], {t, O, duration},
PlotRange -» All, PlotLabels -» {"Prey", "Predator'"}]
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The ultimate system utilised are the Generalised Lotke-Volterra Equations, which can model n number
of species. This is done using the generalised formula:

Xi'(t) = (ri+ A) x

here A represents a matrix of interactions between various species. Each row of the matrix has 3 inputs,
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{effect of species a on species b, effect of species b on species a, and effect of species a on itself}. An
example with three species is implemented below.

identities = {x, y, z};

growthRates = {3, 4, 7.2};

initials = {0.1, 0.8, 0.3};

interactionMatrix = {{-0.5, -1, 0}, {0, -1, -2}, {-2.6, -1.6, -3}} ;
(*Creating the interaction matrixsx)

Grid[interactionMatrix] (*Visualisationx)

-0.5 -1 o0

(0] -1 -2
-2.6-1.6 -3
n=3;

system = Table[Flatten[{identities[i] '[t] == (growthRates[1i] +
Total[Table[interactionMatrix[i][j] » identities[jl[t], {j, n}1]) *
identities[i][t], identities[i] '[O] == initials[i]}], {i, n}]1;
(*Generating a system of equations from the parametersx)
Column[system]

(X'[t] =x[t] (3-0.5x[t] -y[t]), x'[0] = 0.1}
{y'[t] =y[t] (4-y[t]-22z[t]), y'[0] =0.8}
(z'[t] = (7.2-2.6x[t] -1.6y[t] -3z[t]) z[t], 2/ [0] = 0.3}

genEq = Flatten[system]

(X' [t] = x[t] (3-0.5x[t] ~y[t]), x'[0] = 0.1, y'[t] =y[t] (4-y[t] -22[t]),
y'[0] =0.8, z/[t] = (7.2 -2.6x[t] -1.6y[t] -32z[t]) z[t], 2 [0] = 0.3}

genSol = NDSolve[genEq, identities, {t, 0, duration}]

Domain: {{0., 100.}} ]

{{X - InterpolatingFunction { Output: scalar

y » Interpolati ngFunct‘ion[ bomain: {{0., 100.}) J

Output: scalar ’

z » InterpolatingFunction [ Domain: {{0., 100.}} J }}

Output: scalar
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ini741= Plot[Evaluate[{x[t], y[t], z[t]} /. genSol],
{t, 0, duration}, PlotLabels » {"x", "y", "z"}]
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