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It will not become obvious for a while, but we are actually leaving oscillation and starting into waves. 
Our first step down this path is to do two oscillators. Our next step will be to do many oscillators (like 
10 or 100).

General Case

Here is a nice diagram (thank you, Jim Belk and Wikimedia Commons) of two oscillators, coupled to 
each other:

Two harmonic oscillators, having two different masses, each coupled to a wall by two different springs, 
and then coupled to each other by one additional spring, is the most general coupled harmonic oscilla-
tor configuration.

Some Simplifications and Comparisons

There is no need to be so general on our first problem! Let us simplify! We can take m1 = m2 = m.

We can also take k1 = k2 = k.

We could even take k12 = k, but let’s not do that, because it is interesting to see what happens when the 
oscillators are weakly coupled. In other words, when k12 ≪ k.

Even though the two masses are now identical, we are going to need two positions and two velocities 
to describe the motion of the two masses.

So the code is going to be about as complicated as when you solved the Naval Battle notebook. In that 
notebook, there was only one mass (the cannonball), but it had two coordinates. Now there are two 
masses, but they each only have one coordinate, so once again we will have two coordinates and two 
velocities, but now for the completely different reason that there are two masses.



The Forces

The Left Spring Affects the First Mass

Let’s let x1 be the displacement (to the right) of the first mass (from its equilibrium position). How much 
is the left spring stretched? It is stretched by x1.

It pulls in the negative direction if the first mass is moved in the positive direction (stretch), and it 
pushes in the positive direction if the first mass is moved in the negative direction (compressed). Both 
the compression  the left-most spring on the first mass are neatly summarized by the single equation:

Fleft spring on 1st mass = -k x1

It is super-important to pay attention to the signs, otherwise instead of oscillation we would get run-
away exponential growth.

The Right Spring Affects the Second Mass

Let’s do another easy one. The force of the right-most spring on the second mass 
is:

Fright spring on 2nd mass = -k x2

The Middle Spring Affects Both Masses

Now for the tricky forces that come from the coupling spring (the middle spring).

It is stretched if the 2nd mass is moved in the positive direction. But it is compressed if the first mass 
moves in the positive direction. So how much is the net amount of stretch?? x2 - x1!

When it is stretched it pulls in the positive direction on the first mass. So the force of the middle spring 
on the first mass is (note the plus sign):

Fmiddle spring on 1st mass = +k12 (x2 - x1)

Also, when it is stretched it pulls in the negative direction on the second mass. So the force of the 
middle spring on the second mass is:

Fmiddle spring on 2nd mass = -k12 (x2 - x1)

The Accelerations

As always we have F = ma, but now we have to apply Newton’s Second Law to each of the masses.

So now there are two acceleration formulas:

a1 = F1 /m

a2 = F2 /m

We are almost there. We just have to put the total force on the first mass into the equation for a1,

a1 = F1 /m = Fleft spring on 1st mass + Fmiddle spring on 1st mass m =[-k x1+k12(x2-x1)] /m

and the total force on the second mass into the equation for a2:

a2 = F2 /m = Fright spring on 2nd mass + Fmiddle spring on 2nd mass m =[-k x2-k12(x2-x1)] /m
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Convenient Definitions

Sure, it is getting a little messy, but look on the bright side. The forces do not depend on time. And the 
forces do not depend on velocity! They only depend on positions. So coding up Runge-Kutta for both of 
these masses is not going to be as bad as it could be. 

Also, we can make things look a tad simpler by defining:

ω0
2 ≡ k /m

ω12
2 ≡ k12 /m

 
Then we can write things with less parentheses and brackets:
 
a1 = -ω0

2 x1 +ω12
2(x2 - x1)

 
a2 = -ω0

2 x2 -ω12
2(x2 - x1)

Comments About Weak Coupling and No Coupling

If the coupling spring were not present, we would have two independent harmonic oscillators. Can we 
see that? Of course! If the coupling spring were not present, that is the same as setting k12 = 0 which is 
the same thing as setting ω12

2 = 0, and then we would just have:

 a1 = -ω0
2 x1

 
 a2 = -ω0

2 x2

Since we have simplified our lives a bit by not having any damping (no γ’s), we know the exact solution 
in the case of no coupling:

x1(t) = A1 cosω0 t +B1 sinω0 t

x2(t) = A2 cosω0 t +B2 sinω0 t

The four constants can be anything. A1 and A2 are the initial displacements from equilibrium. B1 ω0 and 
B2 ω0 are the initial velocities.

Perhaps the weak coupling case bears some resemblance to the no-coupling case. Let’s code it all up 
and find out what emerges.
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Epilog — A Taste of What is Coming

The notebook you are about to do only has two masses and three springs. Can you see what we might 
have to do if we had seven masses and eight springs, and while we are generalizing, let’s make all the 
springs identical to reduce the work a bit:

a1 = -ω0
2 x1 +ω0

2(x2 - x1)

a2 = -ω0
2(x2 - x1) + ω0

2(x3 - x2)
 
a3 = -ω0

2(x3 - x2) + ω0
2(x4 - x3)

a4 = -ω0
2(x4 - x3) + ω0

2(x5 - x4)

a5 = -ω0
2(x5 - x4) + ω0

2(x6 - x5)

a6 = -ω0
2(x6 - x5) + ω0

2(x7 - x6)

a7 = -ω0
2(x7 - x6) -ω0

2 x7

The only ones that break the pattern a little are the end masses that are connected to the walls. All the 
interior masses follow a  completely repetitive pattern. The two exceptions to the pattern are that the 
left-most mass doesn’t have a left neighbor, and the right-most mass doesn’t have a right neighbor.
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