
Second-Order Runge-Kutta — Theory
January 29, 2025

Velocity from Acceleration — Recap

On January 24, we settled on and used the following update strategy:

ti+1 = ti +Δt

x(ti+1) = x(ti) +
v(ti)+v(ti+1)

2
·Δt

v(ti+1) = v(ti) + ati +
Δt
2
 ·Δt

I warned you that there was going to be a complication.

The Complication — Recap

In the formula

v(ti+1) ≈ v(ti) + ati +
Δt
2
 ·Δt

or with Newton’s 2nd Law substituted in,

v(ti+1) ≈ v(ti) +
Fti+

Δt
2

m
·Δt

the complication is that in most physical systems

a(t) = F(t)
m

is not directly a given function of time. Far more commonly it is indirectly a function of time via the
position and velocity:

a(t) = F(x(t), v(t))
m

Sometimes the force is both directly and indirectly a function of time, in which case we would write:

a(t) = F(t, x(t), v(t))
m

A Simplification

So that we don’t overdo the complexity right off the bat, let’s focus on a simpler and quite common
situation,

a(t) = F(x(t))
m

In other words, let’s leave out the possibility that F depends directly on the time, and also leave out the
possibility that F depends on the velocity. We are only allowing F to depend indirectly on the time via
the position.

Leaving out velocity-dependent forces means that systems with friction, drag, or magnetism aren’t
ones we can yet work on. Leaving out time-dependence means that we can’t work on systems that
have externally-controlled forces, like the force of a person periodically pushing on the back of a kid on
a swing-set.

However, a lot of interesting systems can be idealized as frictionless — for example, the motion of a
mass on a spring, or the motion of a planet around the Sun — and many, if not most, interesting sys-
tems do not have externally applied and controlled forces.

A Chicken-and-Egg Problem

Here are our three update equations, but rewritten to emphasize that the only way that the accelera-
tion a depends on t is via x(t):

ti+1 = ti +Δt

x(ti+1) = x(ti) +
v(ti)+v(ti+1)

2
·Δt

v(ti+1) = v(ti) + axti +
Δt
2
 ·Δt

Notice that I am still using the trapezoid approximation to update x and I am still using the midpoint
time in a(x(t)) to update v, exactly as we did above.

Do you see the chicken-and-egg problem!?

We can’t compute the updated x(ti+1) without knowing v(ti+1)

We can’t compute the updated v(ti+1) without knowing a at the midpoint time, which in turn requires
knowing x at the midpoint time, xti +

Δt
2
.

2 RungeKutta2-Theory.nb

A Worse Chicken-and-Egg Problem

We might try a trapezoid approximation for the calculation of v(ti+1), but that makes the chicken-and-
egg problem if anything a little more poignant:

ti+1 = ti +Δt

x(ti+1) = x(ti) +
v(ti)+v(ti+1)

2
·Δt

v(ti+1) = v(ti) +
a(x(ti))+a(x(ti+1))

2
·Δt

Good luck telling Mathematica how to do that pile of circular reasoning.

A Way Out

Imagine that instead of using midpoint or trapezoid, we begin by making the simple left-hand approxi-
mation for x(ti+1), and we’ll even give it its own symbol to emphasize that it is the dirt-simple left-hand
approximation:

x*(ti+1) ≈ x(ti) + v(ti) Δt

Definitely we can do that without encountering any circular reasoning because the right-hand side only
contains x(ti) and v(ti). Then we make a version of the trapezoid approximation to ai→i+1,avg, by trying

ati→ti+1,avg ≈
a(x(ti))+a(x*(ti+1))

2

Then we put that version of the trapezoid approximation into the update equation for v(ti+1):

v(ti+1) = v(ti) +
a(x(ti))+a(x*(ti+1))

2
·Δt

Still no circular reasoning! Finally, we use the trapezoid approximation again to get a more sophisti-
cated approximation to x(ti+1):

x(ti+1) = x(ti) +
v(ti)+v(ti+1)

2
·Δt

You might have a feeling that this is ad hoc, but at least the chicken-and-egg problem has been evaded.

This procedure and generalizations of it have stood the test of time. They were studied by Carl Runge in
1895, Heun in 1900, and Martin Wilhelm Kutta in 1901 and this version and other Runge-Kutta proce-
dures that we will soon get to are still widely used.

RungeKutta2-Theory.nb 3

Summary — Second-Order Runge-Kutta

We were motivated to try this update procedure when F or a depended on time indirectly via the
position x:

ti+1 = ti +Δt

x(ti+1) = x(ti) +
v(ti)+v(ti+1)

2
·Δt

v(ti+1) = v(ti) +
a(x(ti))+a(x(ti+1))

2
·Δt

We realized that this system suffered a chicken-and-egg problem.

We decided to try this update procedure instead:

ti+1 = ti +Δt

x*(ti+1) = x(ti) + v(ti) Δt

v(ti+1) = v(ti) + (a(x(ti)) + a(x*(ti+1))) ·
Δt
2

x(ti+1) = x(ti) + (v(ti) + v(ti+1)) ·
Δt
2

This update procedure is an example of Second-Order Runge-Kutta. There is a one-parameter family of
such procedures. This particular member of the family is what we are going to use shortly to get the
motion of a mass on a spring.

A Note on Sources

At some point in the future, you may want a reference that gets to a sophisticated punch-line much
more quickly. I am deliberately building up a sophisticated procedure one modest step at a time. More
advanced references cut straight to the chase. When preparing these notes, I referred to Section 3.1 of
Gregory Fasshauer’s notes for IIT Math 472, online at https://www.math.iit.edu/~fass/472Notes.pdf.
The ultimate reference, by a person who advanced the theory in the 1960s, seems to be J.C. Butcher,
Numerical Methods for Ordinary Differential Equations, Wiley, 2003.

A more introductory and physics-focused book is Alejandro L. Garcia, Numerical Methods for Physics,
Prentice-Hall, 1994. The code listings in it are in MATLAB. Another introductory and physics-focused
book is Nicholas J. Giordano, Computational Physics, Prentice-Hall, 1997. The code listings in it are in
BASIC. As computational methods have gotten more popular, there have followed an endless number
of other textbooks.

4 RungeKutta2-Theory.nb

