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It is time to introduce the second derivative, and torsion waves are a great place to do it. Here again is 
our apparatus:

Each rod has an angle, and it has a new angle at every time step. I am going to try to be consistent and 
write θ j(ti). In other words, if there are 72 rods, j is going to be the index that through the range 1 to 72. 
Meanwhile, i is going to be the index that goes through the time steps.

Derivatives With Respect to Time

Here is why we defined the average angular velocity for rod j from time ti to ti+1:

ω j,i→i+1,avg ≡
θ j(ti+1)-θ j(ti)

ti+1-ti

Another way you might write this using ti+1 = ti +Δt is ω j,i→i+1,avg =
θ j(ti+Δt)-θ j(ti)

Δt
.

and it is helpful to think of this loosely as "ω j(ti+1/2)". We also have: ω j,i-1→i,avg =
θ j(ti)-θ j(ti-Δt)

Δt
.

and it is helpful to think of that loosely as "ω j(ti-1/2)". If we want to get the average angular accelera-
tion, we compute the rate of change of angular velocity as follows:

α j,avg(ti) ≡
"ω j(ti+1/2)"-"ω j(ti-1/2)"

Δt
=

θ j(ti+Δt)-θ j(ti)

Δt
-
θ j(ti)-θ j(ti-Δt)

Δt

Δt
= θ j(ti+Δt)-2 θ j(ti)+θ j(ti-Δt)

(Δt)2

Equivalently, I could have written:

α j,avg(ti) =
θ j(ti+1)-2 θ j(ti)+θ j(ti-1)

(Δt)2

Of course, this is an average velocity, and if you are in a calculus course, you learn how to take the limit 
that Δt → 0 at which point the right-hand side becomes the second derivative, and the left-hand side is 
what we call instantaneous acceleration.

The second derivative here is a second derivative with respect to the time coordinate, t.



Derivatives With Respect to Space

Let’s inspect more closely, just as an example, the formula α3 we had in the 
“Torsion Saves—Theory” derivation:

α3 = -ω0
2(θ3 -θ2) + ω0

2(θ4 -θ3)

Remember that ω0
2 = κ

I
 where κ is the proportionality constant that says how much torque the stain-

less steel wire creates in opposition to twist, and I is the moment of inertia of the rod. So putting some 
of these things back in, and letting j = 3 so that we have a formula that is true for any rod (except for the 
end ones that are a little bit special), we have

α j(ti) = - κ
I
θ j(ti) - θ j-1(ti) +

κ
I
θ j+1(ti) - θ j(ti)

I also put back in the times so that you don’t forget how much complexity is hidden in the notation.

Now I need to argue two more things: (1) That if you have a piece of stainless steel wire, and you cut it 
in half, it will resist twisting twice as much; (2) That if you have a sheet of material and you cut it into 
rods that are half as wide, each rod will have half the moment of inertia. 

In other words, if you have a continuous sheet, and you are trying to imagine that it has a backbone on 
which the continuous sheet is carried, and you are imagining that this backbone is cut up into little bits of 
length Δ x, then the κ is actually inversely proportional to Δ x and the I is actually proportional to Δ x. In 
other words, if we want to capture the correct transition to an infinite number of infinitely narrow rods, we 
should have written:

α j(ti) = - κ/Δx
IΔx

θ j(ti) - θ j-1(ti) +
κ/Δx
IΔx

θ j+1(ti) - θ j(ti)

Now let’s re-introduce ω0
2 = κ

I
 and simplify, and we see

α j(ti) = ω0
2 θ j+1 (ti)-2 θ j(ti)+θ j-1(ti)

(Δx)2

If you look closely at the right-hand side, you will see that the combination of θ’s is shockingly similar 
to the second derivative with respect to time, which was

θ j(ti+1)-2 θ j(ti)+θ j(ti-1)

(Δt)2

The difference is that the index j is changing instead of the index i and what is in the denominator is the 
rod-spacing squared instead of the time-step squared. This new combination is called the second 
derivative with respect to the space coordinate, x.
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Putting the Equations Together

We have two expressions for α j(ti) and putting them equal to each other, we see that what we are 
having Mathematica do is doing is solving these equations:

θ j(ti+1)-2 θ j(ti)+θ j(ti-1)

(Δt)2
= ω0

2 θ j+1 (ti)-2 θ j(ti)+θ j-1(ti)

(Δx)2

These equations tell how to get the θ values at a later time from the θ values at the current and previ-
ous times. If you don’t see this, let me re-arrange so that you can see that this is really a way of stepping 
forward in time:

θ j(ti+1) = 2θ j(ti) - θ j(ti-1) +ω0
2(Δt)2 θ j+1 (ti)-2 θ j(ti)+θ j-1(ti)

(Δx)2

Runge-Kutta 2 is a tad fancier because it introduces a time t* which is part-way from ti to ti+1, but it is 
only doing that for sake of efficiency, and it is essentially doing this work.

That’s enough on second derivatives for now, except I guess I should introduce the very fancy notation 
that is used when the time steps Δt and the spacing Δx is taken to zero. Then the way to write

limΔt→0
θ j(ti+1)-2 θ j(ti)+θ j(ti-1)

(Δt)2
= ω0

2limΔx→0
θ j+1 (ti)-2 θ j(ti)+θ j-1(ti)

(Δx)2

is

∂2θ
∂t2 = ω0

2 ∂2θ
∂x2

This means no more and no less than the equations you are already familiar with, but the notation is 
becoming ever more abstract and compact.

When you see physicists and mathematicians write down “wave equations” this is the notation they 
use.
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Units

In the section above titled, “Derivatives with Respect to Space,” the spacing between rods, Δx, 
appeared.

Up until this point, we have been defining ω0
2 = κ

I
 and I have claimed that with κ being the coefficient 

of proportionality in τ = -κθ and I being the moment of inertia, then ω0 has the units of frequency.

But once we introduced the spacing between rods, I argued that we really have

 I
Δx

∂2θ
∂t2 = κΔx ∂2θ

∂x2

 
 where I

Δx
 is the moment of inertia per unit of distance, and κΔx is an intrinsic property of the stainless 

steel backbone of the torsion apparatus.
 
 The units of I

Δx
 in the usual MKS units of physics are kg ·m (kilogram·meters) and the units of κΔx are  

kg·m3

s2  (kilogram·meters-cubed/seconds-squared). So the units of κΔx
I/Δx

 are (kilogram·meters-cubed/sec-

onds-squared) / (kilogram·meters).
 
Do all the canceling and you get meters-squared/seconds-squared. In other words, this combination 
has the units of velocity-squared!

We generally don’t keep units around in our numerical simulations, but if we did, we now see that we 
could have defined

v2 = κΔx
I/Δx

and v would have the units of velocity. The wave equation would then read

 ∂
2θ
∂t2 = v2 ∂2θ

∂x2
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