
General Second-Order Runge-Kutta — Forced Oscillation
Analyzed in class, February 7, 2025

This is the fifth notebook for you to complete. Get the rungeKutta2[] implementation working
before class, and then we will analyze it in class together. By the way, a synonym for forced oscillation
is “driven oscillation.”

Forced Oscillation

Problem Description

In[34]:= omega1 = 1;
externalForce[t_] := 100 Sin[omega1 t]
springConstant = 20;
dampingConstant = 1;
force[t_, x_, v_] := -springConstant x - dampingConstant v + externalForce[t]
mass = 5;
a[t_, x_, v_] := force[t, x, v] / mass;
tInitial = 0;
tFinal = 100;
steps = 25000;
deltaT = (tFinal - tInitial) / steps;

Initial Conditions

Let’s let the spring be initially unstretched with no velocity and see what the external force does to it:

In[45]:= xInitial = 0.0;
vInitial = 0.0;
(* We also want to be able to visualize the external force,
so let's tack it on to the quantities that will be tabulated by NestList *)

initialConditions =

{tInitial, xInitial, vInitial, externalForce[xInitial] / springConstant};

General Second-Order Runge-Kutta — Implementation

The implementation will be almost the same as in the damped oscillation notebook you completed last
Friday.

There are only a few small things that have to be changed. Figure out what they are and then if you still
have that code handy, you can almost completely re-use what you did in that notebook. Or just write it
out again! The more times you write it out, the better you will remember it.

lambda = 1; (* I am going to switch to a different letter for
what we have been calling alpha and you should too. We are running
out of common letters and I will want to reuse alpha for something
else in the next notebook which is the pendulum problem. *)

rungeKutta2[cc_] := (

(* Extract time, position, and velocity from the list *)

curTime = cc〚1〛;
curPosition = cc〚2〛;
curVelocity = cc〚3〛;
(* Compute tStar, xStar, vStar *)

tStar = curTime + lambda deltaT;
(* Implement General Second-Order Runge-Kutta *)

newTime = curTime + deltaT;
(* We are keeping track of the contribution
to the acceleration due to the external force *)

{newTime, newPosition, newVelocity, externalForce[newTime] / springConstant}
)

N[rungeKutta2[initialConditions]] (* Test your rungeKutta2 function. *)

(* The output just below should be 0.004, 3.19999*10-7, 0.00016, 0.0199999. *)

Displaying Forced Oscillation

Nest the procedure and then transpose the results to produce position and velocity plots:

In[51]:= rk2Results = NestList[rungeKutta2, initialConditions, steps];
rk2ResultsTransposed = Transpose[rk2Results];
positionPlot = ListPlot[Transpose[rk2ResultsTransposed〚{1, 2}〛]]

In[53]:= positions = rk2ResultsTransposed〚2〛;
forces = rk2ResultsTransposed〚4〛;

In[55]:= Animate[NumberLinePlot[{positions〚step〛, forces〚step〛}, PlotRange → {-50, 50}],
{step, 0, steps, 1}, DefaultDuration → 20]

Conclusion / Commentary

Our oscillator now has the force law F(x) = -20 x - v and in addition a sinusoidal external driving force.
You will remember that in the conclusion last Friday’s notebook (before the epilog on car suspension) I
defined ω0 and γ. In this notebook, we additionally have the driving frequency omega1. So now you
see why I put the subscript “0” on ω in the previous notebook. In total we now have three relevant
frequencies in the damped, driven harmonic oscillator.

ω1 the external or driving frequency
ω0 the natural frequency of the oscillator in the absence of damping
γ the frequency that controls the rate of decay of the exponential

There is enough complexity in this system that it provides a lot to play around with. Once you all have it
working, we’ll adjust the input parameters to get other values for the frequencies.

2 05-GeneralRungeKutta2-ForcedOscillation.nb

Our oscillator now has the force law F(x) = -20 x - v and in addition a sinusoidal external driving force.
You will remember that in the conclusion last Friday’s notebook (before the epilog on car suspension) I
defined ω0 and γ. In this notebook, we additionally have the driving frequency omega1. So now you
see why I put the subscript “0” on ω in the previous notebook. In total we now have three relevant
frequencies in the damped, driven harmonic oscillator.

ω1 the external or driving frequency
ω0 the natural frequency of the oscillator in the absence of damping
γ the frequency that controls the rate of decay of the exponential

There is enough complexity in this system that it provides a lot to play around with. Once you all have it
working, we’ll adjust the input parameters to get other values for the frequencies.

Correcting a Bit of Sloppiness

There is actually a fourth frequency which is derived from two others:

ω0
2 - γ2 the frequency of the oscillator including damping (which slows it down a little)

It didn’t occur to me to mention this frequency previously, because it makes such a small difference
that I had actually forgotten about it. Also, I have never shown you the full solution, let alone derived it,
which requires more differentiation and algebra than we typically do in this course. To see how small a
difference it makes with our values for ω0 and γ, let’s look at how much this ratio differs from 1:

ω0
2-γ2

ω0
= 1- γ2

ω0
2 ≈ 1- 1

2
γ2

ω0
2 = 1- 1

2
b2 m2

km
= 1- 1

8
b2

km
= 1- 1

8
12

20·5
= 1- 1

800
= 0.99875 ≈ 0.999

So it is about a one-part-in-a-thousand effect. Still, the effect piles up over many oscillations. If you

were to do 800 oscillations using ω0, you’d discover that the actual system which has ω0
2 - γ2 as its

oscillation frequency had only done 799.

Epilog — Resonance

Let’s display ω1, ω0, and γ for easy comparison:

In[56]:= omega0 = Sqrt[springConstant / mass];
gamma = dampingConstant / (2 mass);
{omega1, omega0, gamma}

At minimum, one of the things we should do as part of playing around with this system is just to jack up
ω1 so that it is almost as large as ω0. For example ω1 = 1.8 is good to try. That is “just below resonance.”

Then put ω1 right on resonance (in the absence of damping): ω1 = 2. When the system is driven very
near resonance, it oscillates widely. It will help to make a smoother and easier-to-contemplate anima-
tion to jack up the number of steps to 50 000 and also to slow the animation duration down by doubling
the animation duration: DefaultDuration → 40.

Then we should try ω1 = 2.2. That is “just above resonance.”

Seeing real systems being driven near resonance was the traditional way of showing what a modern
Mathematica notebook like this one shows before computer simulations reduced the incremental
value of real lecture demonstrations. I still find seeing videos of real systems helpful. Here is a good one
showing resonance: https://youtu.be/aZNnwQ8HJHU.

05-GeneralRungeKutta2-ForcedOscillation.nb 3

