Damped Pendulum — With Animated Graphics

Started in class, February 7, 2025, and you are finishing as Problem Set 6 for Feb. 11. Your
jobis to complete the implementation of the rungeKutta2[] function and the
pendulumGraphic[] function.

This is our sixth numerical methods notebook.
NB: Also due Feb. 11, as Problem Set 7, you are doing the exercises from EIWL3 Sections 18 and 19.

Damped Oscillation

Angular Acceleration a

n[-]= gravity = 9.80665;
(* the value of gravity in units of meters / seconds-squared =x)
length = 0.24840;
(* A pendulum whose length 1is 9.7795 {inches converted to meters)
(* The natural frequency of such a
pendulum provided the swings are not large: =)
omegad = Sqrt[gravity/ length];
gamma = 0.03;
(* A real pendulum swinging in air typically has a small gamma. =)
period = 2 Pi/omega0;
(* The length was chosen so that the period is 1 second. To be x)
(* precise, 2 Pi / omega® = 0.999989,
and 2 Pi / Sqrt[omega®”r2-gammar2] = 1.000000. =x)
a[t_, theta_, omega_] := -omega®’ Sin[theta] -2 gamma omega;

Simulation Parameters

n-1= tInitial = 0.0
tFinal = 50.0;
steps =200000;
deltaT = (tFinal - tInitial) / steps;

Initial Angle and Angular Velocity

Let’s let the pendulum be initially held still at 10° and gently released:

2 | 06-DampedPendulum-WithAnimatedGraphics.nb

in[-1-= thetaInitial =10 °;
omegaInitial = -gamma thetaInitial;
(* gamma is small, and this is only 0.3° / second. %)
(* Putting in the small -dnitial velocity makes
the approximate theoretical solution simplify. x)
initialConditions = {tInitial, thetaInitial, omegaInitial};

General Second-Order Runge-Kutta — Damped Pendulum Theory Recap

So you don’t have to flip back to the damped pendulum theory handout, I’ll recapitulate:
U =t+AAL

6" = 0(t)) + w(t)) - AAt

w* = w(t) +a(t, 6(t;), w(t)) AAt

ti, =t +At

W(ti) = wit;) +((1- 2—1A) a(t;, O(t;), w(t)) + 2—1A a(t’, 6°, w*))- At

O(ti1) = 6(t) + (w(t;) + W(ti1)) 5

We got this by mindlessly making the replacements:

X-> 06
Vo w
a-a

06-DampedPendulum-WithAnimatedGraphics.nb | 3

General Second-Order Runge-Kutta — Implementation

The implementation of the damped pendulum is almost the same as the damped oscillator. Finish the
implementation.

lambda = 1;
rungeKutta2[cc_] := (
(*» Extract time, angle, and angular velocity from the list x)
curTime = cc[1];
(» Compute tStar, xStar, vStar =)
tStar = curTime + lambda deltaT;
(* Implement General Second-Order Runge-Kutta =x)
newTime = curTime + deltaT;
newAngularVelocity = dog;
newAngle = pony;
{newTime, newAngle, newAngularVelocity}
)
N[rungeKutta2[initialConditions]]
(» Test the rungeKutta2 function you just wrote. x)
(* The output just below should be {0.00025,0.174531,-0.00694977} =x)

Displaying Oscillation
Nest the procedure, transpose the results, and produce a plot of the angle 6 as a function of time:

in[-1:= rk2Results = NestList[rungeKutta2, initialConditions, steps];
rk2ResultsTransposed = Transpose[rk2Results];
times = rk2ResultsTransposed[1];
thetas = rk2ResultsTransposed[2];
thetaPlot = ListPlot[Transpose[{times, thetas}]];
(* the theoretical solution is approximately known,
provided the angle remains small x)
(» let's plot the envelope of the theoretical solution %)
envelopeFunction[t_] := thetaInitial Exp[-gamma t]
approximateTheoreticalEnvelope =

Plot[{envelopeFunction[t], -envelopeFunction[t]}, {t, tInitial, tFinal}];

Show[{thetaPlot, approximateTheoreticalEnvelope}]

In the preceding plot, the theoretical solution is approximately known, provided the angle remains
small, and so | added the envelope of the theoretical solution to the plot.

Displaying Theory

In the following plot, | have included the theoretical oscillation, not just the envelope (but the same
approximation that the angle must remain small still applies):

4 | 06-DampedPendulum-WithAnimatedGraphics.nb

In[«]:=

approximateTheoreticalSolutionPlot =
Plot[{envelopeFunction[t], -envelopeFunction[t],

envelopeFunction[t] Cos[Sqrt[omega®® - gamma’] t]}, {t, tInitial, tFinal}];

Show[{thetaPlot, approximateTheoreticalSolutionPlot}]

Drawing a Pendulum with Coordinates and Graphics

To do a legible job of this, you may need to review Section 14 of E/IWL3. The goal is to finish implement-
ing the function below so that you get a picture something like the one | have pasted in.

pendulumGraphic[angle_] := Graphics][{
EdgeForm[Thin], White,
RegularPolygon[{0.0, 0.0}, 0.4, 4],
Black,
Circle[{0, 0}, length],
(» all I left for you to add 1is two points and a line x)

}
pendulumGraphic[20 °]

06-DampedPendulum-WithAnimatedGraphics.nb | 5

The pendulum graphic you are trying for (when the function is passed in 20° for the angle, and of
course your function should do the right thing for any other angle):

Animating the Graphics

It’s also nice to have an animation, arranged so that the default duration of the animation is the actual
duration of the animation:

in[-1:- Animate [pendulumGraphic[thetas[step]],
{step, 0, steps, 1}, DefaultDuration - tFinal - tInitial]

