
Damped Pendulum — With Animated Graphics
Started in class, February 7, 2025, and you are finishing as Problem Set 6 for Feb. 11. Your 
job is to complete the implementation of the rungeKutta2[] function and the 
pendulumGraphic[] function.

This is our sixth numerical methods notebook.

NB: Also due Feb. 11, as Problem Set 7, you are doing the exercises from EIWL3 Sections 18 and 19.

Damped Oscillation

Angular Acceleration α

In [ ] := gravity = 9.80665;
(* the value of gravity in units of meters / seconds-squared *)

length = 0.24840;
(* A pendulum whose length is 9.7795 inches converted to meters *)

(* The natural frequency of such a
pendulum provided the swings are not large: *)

omega0 = Sqrt[gravity/ length];
gamma = 0.03;
(* A real pendulum swinging in air typically has a small gamma. *)

period = 2 Pi/ omega0;
(* The length was chosen so that the period is 1 second. To be *)

(* precise, 2 Pi / omega0 = 0.999989,
and 2 Pi / Sqrt[omega0^2-gamma^2] = 1.000000. *)

α[t_, theta_, omega_] := -omega02 Sin[theta] -2 gamma omega;

Simulation Parameters

In [ ] := tInitial = 0.0;
tFinal = 50.0;
steps = 200000;
deltaT = (tFinal - tInitial) / steps;

Initial Angle and Angular Velocity

Let’s let the pendulum be initially held still at 10° and gently released:



In [ ] := thetaInitial = 10 °;
omegaInitial = -gamma thetaInitial;
(* gamma is small, and this is only 0.3° / second. *)

(* Putting in the small initial velocity makes
the approximate theoretical solution simplify. *)

initialConditions = {tInitial, thetaInitial, omegaInitial};

General Second-Order Runge-Kutta — Damped Pendulum Theory Recap

So you don’t have to flip back to the damped pendulum theory handout, I’ll recapitulate:

t* = t + λΔt

θ* = θ(ti) +ω(ti) · λΔt

ω* = ω(ti) + α(ti, θ(ti), ω(ti)) · λΔt

ti+1 = ti +Δt

ω(ti+1) = ω(ti) + 1- 1
2 λ
 α(ti, θ(ti), ω(ti)) +

1
2 λ

α(t*, θ*, ω*) ·Δt

θ(ti+1) = θ(ti) + (ω(ti) +ω(ti+1))
Δt
2

We got this by mindlessly making the replacements:

x → θ
v → ω
a→α
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General Second-Order Runge-Kutta — Implementation

The implementation of the damped pendulum is almost the same as the damped oscillator. Finish the 
implementation.

lambda = 1;
rungeKutta2[cc_] := (

(* Extract time, angle, and angular velocity from the list *)

curTime = cc〚1〛;
(* Compute tStar, xStar, vStar *)

tStar = curTime + lambda deltaT;
(* Implement General Second-Order Runge-Kutta *)

newTime = curTime + deltaT;
newAngularVelocity = dog;
newAngle = pony;
{newTime, newAngle, newAngularVelocity}

)

N[rungeKutta2[initialConditions]]
(* Test the rungeKutta2 function you just wrote. *)

(* The output just below should be {0.00025,0.174531,-0.00694977} *)

Displaying Oscillation

Nest the procedure, transpose the results, and produce a plot of the angle θ as a function of time:

In [ ] := rk2Results = NestList[rungeKutta2, initialConditions, steps];
rk2ResultsTransposed = Transpose[rk2Results];
times = rk2ResultsTransposed〚1〛;
thetas = rk2ResultsTransposed〚2〛;
thetaPlot = ListPlot[Transpose[{times, thetas}]];
(* the theoretical solution is approximately known,
provided the angle remains small *)

(* let's plot the envelope of the theoretical solution *)

envelopeFunction[t_] := thetaInitial Exp[-gamma t]
approximateTheoreticalEnvelope =

Plot[{envelopeFunction[t], -envelopeFunction[t]}, {t, tInitial, tFinal}];
Show[{thetaPlot, approximateTheoreticalEnvelope}]

In the preceding plot, the theoretical solution is approximately known, provided the angle remains 
small, and so I added the envelope of the theoretical solution to the plot.

Displaying Theory

In the following plot, I have included the theoretical oscillation, not just the envelope (but the same 
approximation that the angle must remain small still applies): 
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approximateTheoreticalSolutionPlot =

PlotenvelopeFunction[t], -envelopeFunction[t],

envelopeFunction[t] CosSqrtomega02 - gamma2 t, {t, tInitial, tFinal};

Show[{thetaPlot, approximateTheoreticalSolutionPlot}]

Drawing a Pendulum with Coordinates and Graphics

To do a legible job of this, you may need to review Section 14 of EIWL3. The goal is to finish implement-
ing the function below so that you get a picture something like the one I have pasted in.

In [ ] := pendulumGraphic[angle_] := Graphics[{
EdgeForm[Thin], White,
RegularPolygon[{0.0, 0.0}, 0.4, 4],
Black,
Circle[{0, 0}, length],
(* all I left for you to add is two points and a line *)

}]

pendulumGraphic[20 °]
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The pendulum graphic you are trying for (when the function is passed in 20º for the angle, and of 
course your function should do the right thing for any other angle):

Animating the Graphics

It’s also nice to have an animation, arranged so that the default duration of the animation is the actual 
duration of the animation:

In [ ] := Animate[pendulumGraphic[thetas〚step〛],
{step, 0, steps, 1}, DefaultDuration → tFinal - tInitial]

06-DampedPendulum-WithAnimatedGraphics.nb     5


