
Harmonic Oscillator Redux
Presented in class, April 8, 2025

This is the seventeenth notebook for you to finish in class. We are going to revisit the harmonic oscilla-
tor problems we solved back in the fourth and fifth notebooks. This time we are going to let Mathemat-
ica do all the hard work!

We are leaving behind the crutch of thinking of continuous systems as chunks. We are going to describe 
continuous systems as continuous systems, which means imagining the limit that the sizes of the 
chunks goes to zero while the number of chunks goes to infinity.

But first, we need to get familiar with how Mathematica expects continuous systems to be described. 
Just as we divided space into chunks, even before that in the course, we began by dividing time into 
steps and then used Euler’s Method or Second-Order Runge-Kutta to march forward through the 
discrete steps of time. In reality, probably all the way down to the unfathomably short amount of time 
(10-43 seconds) known as the “Planck time,” time is also continuous.

Let’s see how we describe time-dependent differential equations to Mathematica. Before we get to 
guitar strings and drumheads, we are going all the way back to the problems we solved in the fourth 
and fifth notebooks, the damped and driven harmonic oscillator.

Damped Harmonic Oscillator  — Refresher

Back in the fourth notebook, we considered this force law:

F = -20 x - v

We combined this with Newton’s Law F = ma with m = 5 and then we had

5a = -20 x - v

Then we got slightly fancier and more general. First we divided through by the 5 (whoop-do-doo — one 
step at a time). We  could also put all the terms on the left:

a+ 1
5

v + 20
5

x = 0

The ratio 20
5

 is the ratio of the spring constant to the mass and we called that ω0
2. So for these con-

stants, ω0 =
20
5

= 2. The ratio 1
5

 is the ratio of the damping coefficient to the mass and we called that 

combination 2γ. So for these constants 2 γ = 1
5

 or γ = 1
10

.

Our equation is now:

a+ 2 γv +ω0
2 x = 0

When ω0 > γ as it is here (2 is definitely greater than 1
10

), the system is “underdamped.” The greater the 

ratio of ω0

γ
 the more oscillations occur for each  1

e
- folding of the envelope of the oscillation as its 

motion damps toward nothing. We went through all this almost two months ago (in weeks three and 
four of the semester), and I am giving you a quick refresher. It is ok if you don’t remember all the har-
monic oscillator results, because now we want to rediscover them, but by forcing Mathematica to do 
the hard work of breaking time into steps and applying its solvers.
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Derivatives and Their Notation

We have one more step, which is to introduce the notation of derivatives. We can’t tell Mathematica 
what to do if we don’t have a precise notation.

Recall that the velocity v is the rate of change (with respect to time) of the position x. Meanwhile the 
acceleration a is the rate of change (with respect to time) of the velocity v. The rate of change is called 
the derivative. To say that you want to take a derivative of x(t) with respect to t in Mathematica, you 
write:

In[1]:= Derivative[1][x][t];

Perhaps it is a bit clumsy, and indeed there are shorthands, but let us understand this form, because it 
is unambiguous and it is general which makes it powerful.

Derivative[1][x][t] says take one derivative of the function x with respect to its argument, and 
evaluate the resulting function at time t.

So far we haven’t done anything at all with our symbolic expression of the derivative. One thing we can 
do with it is just display it in a pretty form:

In[2]:= Derivative[1][x][t] // TraditionalForm
Out[2]//TraditionalForm=

x′(t)

The afterthought of TraditionalForm says that you would like to see the result as it would be likely to be 
typeset in a mathematics textbook or in some physics textbooks. Note that physicists (and older 
mathematicians) often use a different notation for the derivatives. The notation is known as Leibniz 
notation. We have our hands full learning Mathematica’s notations. Let’s not add Leibniz notation into 
the mix we are already considering in this notebook.

The acceleration is the rate of change of the velocity, and that is the second derivative, and here is how 
you tell Mathematica you want to take a second derivative of x with respect to t:
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In[3]:= Derivative[2][x][t] // TraditionalForm
Out[3]//TraditionalForm=

x′′(t)

The Damped Oscillator Differential Equation

Here is how you write the whole damped oscillator equation (which if you scroll up, you will see we had 
whittled down to a+ 2 γv +ω0

2 x = 0) in a way that Mathematica can unambiguously understand it, and 
as an afterthought, display it prettily:

In[4]:= Derivative[2][x][t] + 2 gamma Derivative[1][x][t] + omega02 x[t] ⩵ 0 // TraditionalForm
Out[4]//TraditionalForm=

2 gamma x′(t) + omega02 x(t) + x′′(t)  0

Equations involving derivatives are called “differential equations.”

Notice with your full attention the use of == rather than = in the differential equation. We are not mak-
ing an assignment! We are setting up a conditional test between two sides of an equation, and Mathe-
matica is going to do its best to approximately satisfy that conditional test when (deep under the hood) 
it applies some differential-equation solving strategy like Euler, or Runge-Kutta Second Order, or 
maybe Runge-Kutta Fourth Order. (BTW, I apologize that I never got around to introducing Runge-Kutta 
Fourth Order as promised early in the course. It is a mess, even for me, and Runge-Kutta Second Order 
has been serving us fully satisfactorily.)

Now let’s also define omega0 and gamma for Mathematica, and also add some initial conditions on the 
position and velocity. Since we learned the Module notation recently, I’ll toss that in:

In[5]:= Moduleomega0 = 2, gamma =
1

10
,

Derivative[2][x][t] + 2 gamma Derivative[1][x][t] + omega02 x[t] ⩵ 0,

x[0] ⩵ 0, Derivative[1][x][0] ⩵ 3 // TraditionalForm

Out[5]//TraditionalForm=

x′′(t) +
x′(t)

5
+ 4 x(t)  0, x(0)  0, x′(0)  3

I set the initial position at t = 0 as 0 and I set the initial velocity as 3. Again, it is extremely important to 
use == rather than = in the initial conditions as well as in the differential equation. We are setting up 
conditional tests and Mathematica is going to work to make them true. If you screw that up and put in 
assignments, it is quit and restart time.

We have failed to do one minor thing. We have set up a pile of equations, but we haven’t given them 
any name, so we can’t use them anywhere else without typing them in again.

Let’s give this pile of equations a name:
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1
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,

Derivative[2][x][t] + 2 gamma Derivative[1][x][t] + omega02 x[t] ⩵ 0,

x[0] ⩵ 0, Derivative[1][x][0] ⩵ 3 ;

Making Mathematica Solve the Damped Harmonic Oscillator

This particular problem is exactly solvable. So you can tell Mathematica to try to exactly solve it using 
DSolve, and lo and behold, it succeeds:

In[7]:= DSolve[dampedOscillatorProblem]

Out[7]= x[t] → 10
3

133
ⅇ-t/10 Sin

399 t

10


Notice that what is output is a list of lists of rules. All that generality is in case you have multiple func-
tions being solved simultaneously.

We just have one function, so we grab the first and only list of rules out of the list of lists of rules:

In[8]:= dampedOscillatorSolutionRule = DSolve[dampedOscillatorProblem]〚1〛;

Display it so that we can see exactly what we got:

In[9]:= dampedOscillatorSolutionRule

Out[9]= x[t] → 10
3

133
ⅇ-t/10 Sin

399 t

10


We still don’t have something we can plot, because you don’t plot a rule.

We have to turn the rule into a function, and we do that by first writing x[t] and then applying the rule 
to it:

In[10]:= x[t] /. dampedOscillatorSolutionRule
Out[10]=

10
3

133
ⅇ-t/10 Sin

399 t

10


It isn’t particularly clumsy to write x[t]/.dampedOscillatorSolutionRule.

However, let’s be slicker and define a new function:

In[11]:= dampedOscillatorSolution[t_] = x[t] /. dampedOscillatorSolutionRule
Out[11]=

10
3

133
ⅇ-t/10 Sin

399 t

10


To be frank, I don’t know why I might or might not use := above instead of =. I am following 
https://reference.wolfram.com/language/howto/SolveADifferentialEquation.html.en.

In that documentation they don’t use := so I am not. It definitely worked without the :=.
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In[12]:= dampedOscillatorSolution[t]
Out[12]=

10
3

133
ⅇ-t/10 Sin

399 t

10


Here is a screenshot of the relevant portion of the documentation. Maybe by the time we get done with 
EIWL3 I will understand why we are using = instead of := in this situation:

Plotting Damped Harmonic Motion

Finally, we plot the solution:

In[13]:= Plot[dampedOscillatorSolution[t], {t, 0, 20}]
Out[13]=
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Animating Damped Harmonic Motion

We need a crude graphic:

In[14]:= oscillatorGraphic[displacement_, rectangleWidth_] := Graphics[{
EdgeForm[Thin], White,
Rectangle[{-rectangleWidth/ 2, -rectangleWidth/ 4},
{rectangleWidth/ 2, rectangleWidth/ 4}],

Black,
Point[{displacement, 0}]

}]

In the above, rectangleWidth was a parameter, because the largest displacement is going to vary a lot 
from problem to problem. We want the displacement to not go outside the rectangle, and we will have 
to look at the solution and set rectangle width to be a little more than twice the maximum displace-
ment.

Now we have something we can animate:

In[15]:= Animate[oscillatorGraphic[dampedOscillatorSolution[t], 4],
{t, 0, 20}, DefaultDuration → 20]

Out[15]=

t
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Forced Harmonic Oscillator  — Refresher

In the fifth notebook, we added a “driving” or “forcing” function to the oscillator. Our equation 
became:

a+ 2 γv +ω0
2 x = A

m
sinω1t

We chose A = 100 (so with m = 5, we have A
m
= 20) and ω1 to be 1. Keep in mind that we have ω0 = 2. 

Imagine that a kid on a swing swings naturally at some frequency, but you are pushing them repeatedly 
at half that frequency. The kid isn’t going to get very high. It is still an interesting place to start.

Making Mathematica Solve the Forced Harmonic Oscillator

In[16]:= forcedOscillatorProblem = Moduleomega0 = 2, gamma =
1

10
, aoverm = 20, omega1 = 1,

Derivative[2][x][t] + 2 gamma Derivative[1][x][t] + omega02 x[t] ⩵

aoverm Sin[omega1 t], x[0] ⩵ 0, Derivative[1][x][0] ⩵ 0 ;

In[17]:= forcedOscillatorSolutionRule = DSolve[forcedOscillatorProblem]〚1〛;

In[18]:= forcedOscillatorSolution[t_] = x[t] /. forcedOscillatorSolutionRule
Out[18]=

-
50 ⅇ-t/10 399 ⅇt/10 Cos[t] - 399 Cos 399 t

10
 - 5985 ⅇt/10 Sin[t] + 149 399 Sin 399 t

10


45087

Plotting Forced Harmonic Motion

Finally, we plot the solution:

In[19]:= Plot[forcedOscillatorSolution[t], {t, 0, 50}]
Out[19]=

10 20 30 40 50

-5

5
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Animating Forced Harmonic Motion

In[20]:= Animate[oscillatorGraphic[forcedOscillatorSolution[t], 100],
{t, 0, 50}, DefaultDuration → 20]

Out[20]=

t

Forced Harmonic Oscillator  — Resonance

The last thing we did in the fifth notebook, was to start messing with ω1. We brought its value up just 
below the resonance value (we tried ω1 = 1.8).  Then we went just above the resonance value (we tried 
ω1 = 2.2).  We compared the notebook output to video of real systems:

https://youtu.be/aZNnwQ8HJHU.

Messing around with the value of ω1 is begging us to introduce Manipulate[].

Mathematica has a bewildering number of guides on how to use DSolve. Fortunately for us, one of 
these covers combining DSolve[] and Manipulate[]:

https://reference.wolfram.com/language/howto/PlotTheResultsOfNDSolve.html.en
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Forced Harmonic Oscillator  — Exploring Resonance With Manipulate

The recommended strategy in the guide referenced above is to put the entire problem to be solved 
inside the Manipulate function. Obviously this strategy is only going to work for problems that do not 
take long to solve or the Manipulate sliders are just going to feel terribly unresponsive.

Our problem with the changing resonance frequency requires one parameter, which I will imaginatively 
call “parameter ” and in Manipulate[] I will call it “p”:

In[21]:= resonanceProblem[parameter_] :=

Moduleomega0 = 2, gamma =
1

10
, aoverm = 20, omega1 = parameter,

Derivative[2][x][t] + 2 gamma Derivative[1][x][t] + omega02 x[t] ⩵

aoverm Sin[omega1 t], x[0] ⩵ 0, Derivative[1][x][0] ⩵ 0 ;

Be sure to stop the animations higher up in this document while operating the p-slider or your 
notebook will behave sluggishly.

Also, as you hold down and slide the p-slider 0.1 at a time, watch as Mathematica first displays a 
crude graphic, and then when you release the mouse, it cleans up the graphic by replacing it with a 
higher-precision calculation. Its use of discrete time steps leaks through while you are holding the 
slider, and then it takes some time to re-do the calculation with a larger number of time steps in the 
interval.

In[22]:= Manipulate[Plot[x[t] /. DSolve[resonanceProblem[p]]〚1〛 /. t → tPlot,
{tPlot, 0, 50}, PlotRange → {{0, 50}, {-50, 50}},
PlotLabel → NumberForm[p, {2, 1}]], {p, 1.6, 2.4, 0.1}]

Out[22]=

p
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Damped Harmonic Oscillator  — Switching to NDSolve

Earlier in this notebook, we had Mathematica solve the damped harmonic oscillator. It is an exactly 
solvable problem. Mathematica did not need to break time up into steps. Of course, we can solve an 
exactly solvable problem with numerical methods. We use NDSolve[] instead of DSolve[].

First, let’s just have the problem handy again.

In[23]:= dampedOscillatorProblem = Moduleomega0 = 2, gamma =
1

10
,

Derivative[2][x][t] + 2 gamma Derivative[1][x][t] + omega02 x[t] ⩵ 0,

x[0] ⩵ 0, Derivative[1][x][0] ⩵ 3 ;

Here is how you call NDSolve:

In[24]:= NDSolve[dampedOscillatorProblem, x, {t, 0, 20}];

The output is an interpolating function, and again it is a list of lists of rules. Take the first element of the 
list, convert the rule into a function, and give the result a name that we will shortly stick into Plot[]:

In[25]:= dampedOscillatorNumericalSolution[t_] =

x[t] /. NDSolve[dampedOscillatorProblem, x, {t, 0, 20}]〚1〛
Out[25]=

InterpolatingFunction Domain: {{0., 20.}}
Output: scalar [t]

In[26]:= Plot[dampedOscillatorNumericalSolution[t], {t, 0, 20}]
Out[26]=

5 10 15 20

-1.0

-0.5

0.5

1.0

1.5

Compare this with the exact solution that we previously calculated and you’ll see that Mathematica has 
done well with its time steps and its approximate numerical solution:
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In[27]:= Plot[dampedOscillatorSolution[t], {t, 0, 20}]
Out[27]=

5 10 15 20
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-0.5

0.5

1.0

1.5

For an even crisper comparison, we could put the two functions on the same plot:

In[28]:= Plot[{dampedOscillatorNumericalSolution[t],
dampedOscillatorSolution[t]}, {t, 0, 20}]

Out[28]=

5 10 15 20

-1.0

-0.5

0.5

1.0

1.5

The second function (in orange) perfectly covers up the first. You could make the second function 
thinner so it doesn’t completely cover up the first:

In[29]:= Plot[{dampedOscillatorNumericalSolution[t], dampedOscillatorSolution[t]},
{t, 0, 20}, PlotStyle → {Thickness[0.008], Thickness[0.004]}]

Out[29]=

5 10 15 20

-1.0

-0.5

0.5

1.0

1.5

The bottom line is that whatever Mathematica is doing under the hood, its numerical solution is indistin-
guishable from its exact solution.
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Conclusion

This notebook has been a fairly complete survey of Mathematica’s tools for solving “ordinary” differen-
tial equations. Notice that we only have one object, the mass in the oscillator. We have not yet added 
the sophisticated continuum of objects that will yield waves. For that, we will need to go from ordinary 
differential equations to “partial” differential equations. In short, from one or more functions of t to 
one or more functions of t, x, y, and z.

Many problems that are of interest do not require partial differential equations. We are going to explore 
partial differential equations more to complete the promise of this course, but I’d encourage everyone 
to master the ordinary differential equation methods that we have just covered, because you will find 
those tremendously useful in field after field, from physics, to biology, to economics and high finance. 
Be slightly less concerned with mastering the partial differential equations material that comes in the 
remaining six classes. That stuff is primarily of use to physicists and engineers, although meteorolo-
gists, oceanographers, astrophysicists, chemists, and other scientists in physics-adjacent fields often 
have to delve deeply into partial differential equations too.

If you have learned how to apply DSolve[] and NDSolve[] to ordinary differential equations well enough 
to apply them to equations that appear in other fields, you could explore some other field, find some 
important problem in that field that is not exactly solvable, and explore its numerical solutions with 
NDSolve[]. This would make a good final project.

I had to do some subtle work to get the Manipulate[] working. You’ll need to study that code carefully if 
you want to do manipulations.

Animations are intuitive and necessary for those who can’t read graphs well. For final projects, I’d 
recommend creating high-quality graphs, and if you are going to use Manipulate[] use it to manipulate 
graphs, as I have above, rather than animations.

12     17-HarmonicOscillatorRedux.nb


