
Guitar String
Completed and Analyzed in class, April 11, 2025

This is our eighteenth notebook. For most of your special projects, the type of work we did in the 
seventeenth notebook (Harmonic Oscillator Redux) is more relevant than what I am going to show you 
now. Please keep referring to that notebook. It had everything you need to know about how to put 
“ordinary differential equations” into Mathematica.

In this notebook, as part of analyzing a guitar string, we going to put what are called “partial differen-
tial equations” into Mathematica.

Guitar String  — Theory

Back in the thirteenth notebook titled “Torsion Waves,” we got our first really good visualization of 
waves. Torsion waves are a good choice because they are more vivid to look at than the transverse 
waves on a guitar string. Also, an apparatus that is usually purchased by physics departments for wave 
demonstrations of waves does torsion waves:

But now I am going to switch to guitar strings, and the mathematics is completely equivalent! Here was 
the angular acceleration formula from the Torsion Waves notebook:

α j = -ω0
2θ j -θ j-1 + ω0

2θ j+1 -θ j

The corresponding guitar string formula would be:

aj = -ω0
2z j - z j-1 + ω0

2z j+1 - z j

In a theory notebook titled “The Second Derivative,” I did some hand-waving of the kind physicists are 
prone to do, and convinced you (I hope) that what we really had in the limit that the chunks and the 
time steps got smaller and smaller was:

∂2θ
∂t2 = v0

2 ∂2θ
∂x2

For a guitar string, the corresponding equation is:

∂2z
∂t2 = v0

2 ∂2z
∂x2

Let’s be clear about the dependent and independent variables. The time is t. The guitar string is strung 
along the x-axis. Those are the independent variables. The dependent variable is the displacement, 
which we are putting in the z-direction, so the dependent variable is z, and we want to find the function 
of two variables, z(t, x).
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  Partial Derivatives and Their Notation

Now that we have two independent variables, we have to clarify for Mathematica which variable we are 
taking a derivative with respect to. In other words, the obvious generalization of

In [ ] := Derivative[2][z][t] // TraditionalForm
Out[ ] //Tradit ionalForm=

z′′(t)

which would be

In [ ] := Derivative[2][z][t, x] // TraditionalForm
Out[ ] //Tradit ionalForm=

z′′(t, x)

is ambiguous. Are we taking the derivative with respect to t or x? Mathematica specifies it this way:

In [ ] := Derivative[2, 0][z][t, x] // TraditionalForm
Out[ ] //Tradit ionalForm=

z(2,0)(t, x)

That’s two derivatives with respect to the first variable, t. And here is two derivatives with respect to 
the second variable, x:

In [ ] := Derivative[0, 2][z][t, x] // TraditionalForm
Out[ ] //Tradit ionalForm=

z(0,2)(t, x)

You can even do mixed partial derivatives, such as one derivative with respect to t and one derivative 
with respect to x, but we have no need for that.

The Guitar String Differential Equation

Now that we know how the notation for how Mathematica expects us to specify partial differential 
equations, we can give it this differential equation:

∂2z
∂t2 = v0

2 ∂2z
∂x2

Review the previous notebook to see how that was done in for the harmonic oscillator.

(* All the places you have work to do have variations on the *)

(* following earliest etymology of rootin' tootin': *)

(* “Well… Afore hoo’d bin here three days hoo’d hauve *)

(* a dozen colliers whewtin’ an’ tootin’ after her every neet.” *)
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Module[{v0 = 1}, {rootin tootin}] // TraditionalForm
Out[ ] //Tradit ionalForm=

z(2,0)(t, x)  z(0,2)(t, x)

Adding the Boundary Conditions

We are missing the boundary conditions on the string at the bridge and the nut of the gui-
tar.

Put those in:

length = 1;

Module{v0 = 1}, Derivative[2, 0][z][t, x] ⩵ v02 Derivative[0, 2][z][t, x],

colliers whewtin // TraditionalForm
Out[ ] //Tradit ionalForm=

z(2,0)(t, x)  z(0,2)(t, x), z(t, 0)  0, z(t, 1)  0

Adding the Initial Conditions

We are also missing any specification of the initial motion of the string. It isn’t just going to start vibrat-
ing by itself. Here is an initial displacement function:

In [ ] := amplitude = 1;
mode = 1;

f[x_] := amplitude Sin[mode Pi x]

With mode=1, you have the “fundamental.” With mode=2, you have the “first harmonic.” With mode=3, 
you have the “second harmonic.” Add f[x] as an initial displacement to the equations. Also add an 
initial velocity all along the string of 0. Give the resulting problem, which is finally completely specified, 
a name:

exactGuitarStringProblem = Module[{v0 = 1}, {every neet}];

Making Mathematica Exactly Solve the Problem

This problem has an exact solution. So we can use DSolve[] rather than NDSolve[]:
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DSolve[exactGuitarStringProblem]
Out[ ]=

{z[t, x] → Cos[π t] Sin[π x]}

We have the same problems as we had with the harmonic oscillator solution: (1) It is a list of lists of 
rules, and (2) we haven’t given it a name so don’t have a convenient way of using it elsewhere. Fix these 
problems:

exactGuitarStringSolutionRule = well afore hoo' d
Out[ ]=

{z[t, x] → Cos[π t] Sin[π x]}

It is still a rule. Turn it into a function that we can plot:

In [ ] := exactGuitarStringSolution[t_, x_] = z[t, x] /. exactGuitarStringSolutionRule
Out[ ]=

Cos[π t] Sin[π x]

Plotting Exact Solution at t = 1 /4

In [ ] := Plot[exactGuitarStringSolution[1/ 4, x],
{x, 0, 1}, PlotRange → {-1.1, 1.1}, AspectRatio → 0.1]

Animating the Exact Solution

In [ ] := Animate[Plot[exactGuitarStringSolution[t, x],
{x, 0, 1}, PlotRange → {Automatic, {-1.1, 1.1}}, AspectRatio → 0.1],

{t, 0, 10}, DefaultDuration → 10, AnimationRunning → False]

Changing the Mode

Try changing the mode to some other number, like 3, and see what the second harmonic looks like.

Completely Different Initial Conditions

When a guitar string is plucked with something sharp, we can imagine that instead of an initial shape 
looking like,

z(0, x) = amplitude sin(mπ x)

instead we have, if 0 < x < b,

z(0, x) = amplitude x
b

and if b < x < length,

z(0, x) = amplitude length-x
length-b

Using Module[] with {b=1/4}, define a function g[x] that is the right-hand side, taking into account the 
differing behavior when x < b vs. x > b:
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In [ ] := Plot[g[x], {x, 0, 1}, AspectRatio → 0.1, PlotRange → {Automatic, {-1.1, 1.1}}]

Does that look like the way a pick might stretch the string (near the bridge or the sound hole) just 
before it lets it go?

It turns out Mathematica has a lot of trouble handling a solution with such a sharp kink. So now I will 
soften the kink a little:

In [ ] := h[x_] :=
Sum[(32 * Sin[(Pi * K[1]) / 4] * Sin[Pi* x* K[1]]) / (3* Pi^2* K[1]^2), {K[1], 1, 10}]

Plot[h[x], {x, 0, 1}, AspectRatio → 0.1, PlotRange → {Automatic, {-1.1, 1.1}}]

In [ ] := numericalGuitarStringProblem =

Module{v0 = 1}, Derivative[2, 0][z][t, x] ⩵ v02 Derivative[0, 2][z][t, x],

z[t, 0] ⩵ 0, z[t, length] ⩵ 0, z[0, x] ⩵ h[x], Derivative[1, 0][z][0, x] ⩵ 0;

Making Mathematica Numerically Solve the Problem

numericalGuitarStringSolutionRule =

NDSolve[numericalGuitarStringProblem, z, {t, 0, 10}, {x, 0, 1}]〚1〛

Convert the rule to a function:

numericalGuitarStringSolution[t_, x_] = hauve a dozen colliers

Plotting the Numerical Solution at t = 1 /8

Plot[after her, PlotRange → {-1.1, 1.1}, AspectRatio → 0.1]

Animating the Numerical Solution

Animate[Plot[every neet, {t, 0, 10}, DefaultDuration → 10, AnimationRunning → False]

The fact that this isn’t some simple sine wave is part of what gives the guitar its tone or timber. You can 
exaggerate this effect by picking the string very near the bridge.
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