
Diffusion in One Dimension
Completed and Analyzed in class, April 18, 2025

This is our twentieth notebook. In the last two we re-did guitar strings and drumheads using Mathemati-
ca’s ability to solve wave equations.

Now I want to introduce you to a very different kind of problem, but one which has a lot of the same 
mathematics as wave equations. The problem is diffusion. An example would be, how does heat 
distribute itself through a piece of metal?

Diffusion  — Theory

The fundamental idea of diffusion is concentration differences, and random motion that tends (on 
average) to even out such differences.

Consider a one-dimensional rod and let’s have what is being diffused be heat energy. To model this, I 
might break the rod up into chunks of length a, and if the chunks are sufficiently small, I can assign a 
temperature to each of the chunks. (Smallness is important because if a chunk is too big, assigning a 
temperature to the whole chunk might not be a good approximation because the temperature might 
vary significantly over the size of the chunk.)

In a one-dimensional chunk, if we assign an integer j to the chunk, then the chunk to the right of it 
might have integer j + 1 and the chunk to the left j - 1. There will be a temperature in each chunk: 
Tj-1, Tj, and Tj+1.

Now for a big assumption: the amount of heat flowing from into chunk j from the left is some propor-
tionality constant times the temperature difference:

σ Tj-1 - Tj

The amount of heat flowing from into chunk j from the right is some proportionality constant times the 
temperature difference (let’s have the one-dimensional rod be uniform, the consequence of which is 
that the proportionality constant is the same:

σ Tj+1 - Tj

So the total heat flowing into chunk j is:

σ Tj-1 - Tj + σ Tj+1 - Tj = σTj+1 + Tj-1 - 2 Tj

Maybe this is already starting to look suspiciously similar to the one-dimensional wave problem!

As heat flows in to chunk j, it raises its temperature. A fundamental and simplifying assumption (that 
can be made a little more general) is that the temperature increase is proportional to the heat flow. The 
coefficient of proportionality is called the “specific heat,” and our symbol for that will be c, so our 
formula is:

c dT
dt

= σTj+1 + Tj-1 - 2 Tj

As the size of the chunks goes to zero the right-hand side becomes the second derivative with respect 
to the position, x, along the rod, and so we have:

c dT
dt

= σ d2 T
dx2
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The Diffusion Differential Equation
Review the guitar string notebook if you need to be reminded how we specified the partial differential equa-
tion to Mathematica. I am going to choose the constants so c /σ = 100 which slows down the approach to 
equilibrium:

LEFT FOR YOU TO DO

Adding the Boundary Conditions

Let’s give the rod a length and hold one end of it in the forge at some high temperature and the other 
end in an ice bath. Our boundary conditions are then:

length = 1;
forgeTemp = 1000;
iceBathTemp = 0;

LEFT FOR YOU TO DO

Adding the Initial Conditions

The rod might be quite non-uniformly heated at t = 0. The interesting thing is then, how will the heat 
diffuse along the rod. Let’s try a jagged initial function:
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The rod might be quite non-uniformly heated at t = 0. The interesting thing is then, how will the heat 
diffuse along the rod. Let’s try a jagged initial function:

In [ ] := numberOfJaggies = 6;
amplitudeOfJaggies = 500;
lengthOfJaggies = length/ numberOfJaggies;

f[x_] := amplitudeOfJaggies Sin
Pi x

lengthOfJaggies

7
+

forgeTemp + (iceBathTemp - forgeTemp)
x

length

Plot[f[x], {x, 0, length}]
Out[ ]=
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LEFT FOR YOU TO DO

Making Mathematica Numerically Solve the Problem

oneDimensionalDiffusionSolutionRule = LEFT FOR YOU TO DO

Convert the rule to a function:

oneDimensionalDiffusionSolution[t_, x_] = LEFT FOR YOU TO DO
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Plotting the Numerical Solution at t = 1 /10

In [ ] := Plot[oneDimensionalDiffusionSolution[1/ 10, x], {x, 0, length},
PlotRange → {{0, length}, {-amplitudeOfJaggies, forgeTemp + amplitudeOfJaggies}}]

Out[ ]=
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Animating the Numerical Solution

In [ ] := Animate[Plot[oneDimensionalDiffusionSolution[t, x], {x, 0, length},
PlotRange → {{0, length}, {-amplitudeOfJaggies, forgeTemp + amplitudeOfJaggies}}],

{t, 0, 1}, DefaultDuration → 10, AnimationRunning → False]

The fact that this isn’t some simple sine wave is part of what gives the guitar its tone or timber. You can 
exaggerate this effect by picking the string very near the bridge.
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