
Diffusion in Two Dimensions — Steady State
Completed and Analyzed in class, April 18, 2025

This is our twenty-first notebook. In the twentieth notebook, we did one-dimensional diffusion. Now
we are graduating to two-dimensional diffusion. Here is an example:

NB: This is a two-dimensional problem, not a three-dimensional one. The third dimension in the plot is
just helping to visualize the temperature, and unless you are red-green colorblind, the information
supplied by displaying a third dimension is redundant.

The problem has the type of equation that we are currently studying. The specifics of this problem is
that it is a two-dimensional plate that has alternating regions of hot and cold along one side, and is at
an intermediate temperature along the other three sides. For more, see: https://youtu.be/2aJ3fFwET68.

We are going to specify the equation on the interior, and then the boundary conditions, and Mathemat-
ica is going to figure out the steady-state solution.

If you want to see more of the wide variety of equations that can be solved using the techniques we are
using, try https://www.cfm.brown.edu/people/dobrush/am34/Mathematica/ch6/parabolic.html.

Two-Dimensional Diffusion — Steady-State Theory

In one dimension, we had:

c dT
dt

= σ d2 T
d x2

The obvious generalization (I won’t bore you with yet another derivation of combinations of second
derivatives) to two dimensions is:

c dT
dt

= σ d2 T
d x2 + d2 T

d y2 

In one dimension, we had:

c dT
dt

= σ d2 T
d x2

The obvious generalization (I won’t bore you with yet another derivation of combinations of second
derivatives) to two dimensions is:

c dT
dt

= σ d2 T
d x2 + d2 T

d y2 

It can be very interesting to see the time-dependent way that the system settles down to equilibrium, but now I
want to make a huge simplification, which is that the system has already settled down to equilibrium.

As long as the external sources of heat are supplied in a steady (unchanging) way, the system will eventually
settle down. Once it settles down, dT

dt
= 0, and this is true everywhere in x and y. So for the steady state,

our equations become:

0 = σ d2 T
d x2 + d2 T

d y2 

and T, whatever it is, is unchanging, and so it is no longer a function of t. It is only a function of x and y.
Also, even if We just have this as what we specify to Mathematica:

In[97]:= Module[{sigma = 1},
{ sigma (Derivative[2, 0][temp][x, y] + Derivative[0, 2][temp][x, y]) ⩵ 0}] //

TraditionalForm
Out[97]//TraditionalForm=

temp(0,2)(x, y) + temp(2,0)(x, y)  0

Adding the Boundary Conditions

Let’s make boundary conditions like the one pictured at the beginning of this notebook:

In[98]:= lengthX = 100;
lengthY = 60;
amplitude = 1;

mode = 3;
f[x_] := amplitude Sin[mode Pi x/ lengthX]
Plot[f[x], {x, 0, lengthX}]

Out[103]=

20 40 60 80 100

-1.0

-0.5

0.5

1.0

2 21-DiffusionInTwoDimensions-SteadyState.nb

So here is our problem but now with the boundary conditions added:
In[104]:=

Module[{sigma = 1},
{sigma (Derivative[2, 0][temp][x, y] + Derivative[0, 2][temp][x, y]) ⩵ 0,
temp[x, 0] ⩵ f[x], temp[x, lengthY] ⩵ 0, temp[0, y] ⩵ 0,
temp[lengthX, y] ⩵ 0}] // TraditionalForm

Out[104]//TraditionalForm=

temp(0,2)(x, y) + temp(2,0)(x, y)  0, temp(x, 0)  sin
3 π x

100
, temp(x, 60)  0, temp(0, y)  0, temp(100, y)  0

No Initial Conditions!

This is a steady-state problem. Time is not involved. We do not need to specify any initial conditions.
That means the whole problem is what we already specified in the previous section:

In[105]:=

twoDimensionalDiffusionProblem = Module[{sigma = 1},
{ sigma (Derivative[2, 0][temp][x, y] + Derivative[0, 2][temp][x, y]) ⩵ 0,
temp[x, 0] ⩵ f[x], temp[x, lengthY] ⩵ 0, temp[0, y] ⩵ 0, temp[lengthX, y] ⩵ 0}]

Out[105]=

temp(0,2)[x, y] + temp(2,0)[x, y] ⩵ 0, temp[x, 0] ⩵ Sin
3 π x

100
,

temp[x, 60] ⩵ 0, temp[0, y] ⩵ 0, temp[100, y] ⩵ 0

A Great Trick — Known as “Separation of Variables”

We guess that T(x, y) = u(x) v(y).

Upon putting this guess into the differential equations, we discover that if this trick is to work, then u(x)
must satisfy the ordinary differential equation:

d2 u
d x2 = -λ u

and the solutions that have u(0) = 0 and u(lx) = 0 are

un(x) = sin nπ x
lx

, with n = 1, 2, 3, ...

and λn =
n2 π2

lx
2

Now that we know the possible un(x) and λn, we put those into the v equation which is

d2 v
d y2 = λ v

and which has the solutions

v(y) = c+ e λn y + c- e- λn y

If this solution is to be zero at ly, we must have

0 = c+ e λn ly + c- e- λn ly

If the full solution is to be sin 3 π x
lx

 at y = 0 that tells us we must have the solutions with u3(x) and λ3 and

that

1 = c+ + c-

So

0 = c+ e λn ly + (1- c+) e- λn ly = c+e λn ly - e- λn ly + e- λn ly

So

c+ =
-e- λn ly

e λn ly-e- λn ly

and

c- = 1- c+ = 1- -e- λn ly

e λn ly-e- λn ly
= e λn ly

e λn ly-e- λn ly

So

v(y) = c+ e λn y + c- e- λn y = -e- λn ly

e λn ly-e- λn ly
e λn y + e λn ly

e λn ly-e- λn ly
e- λn y

Stick in from what we learned solving the u(x) equation, that we must λ3
2 = 3 π

lx
, and we then have

v(y) = -e
-

3 π

lx
ly

e
3 π

lx
ly-e

-
3 π

lx
ly

e
3π
lx

ly y + e
3 π

lx
ly

e
3 π

lx
ly-e

-
3 π

lx
ly

e-
3π
lx

ly y =
sinh 3π

lx
ly-y

sinh 3π
lx

ly

In the very last step, I used that these particular combinations of exponentials are called sinh (pro-
nounced “cinch” as in “cinching a knot”), and they have companion combinations called cosh (pro-
nounced “kosh”) that we did not need.

So

T(x, y) = u(x) v(y) = sin 3π x
lx

sinh 3π
lx

ly-y

sinh 3π
lx

ly

21-DiffusionInTwoDimensions-SteadyState.nb 3

We guess that T(x, y) = u(x) v(y).

Upon putting this guess into the differential equations, we discover that if this trick is to work, then u(x)
must satisfy the ordinary differential equation:

d2 u
d x2 = -λ u

and the solutions that have u(0) = 0 and u(lx) = 0 are

un(x) = sin nπ x
lx

, with n = 1, 2, 3, ...

and λn =
n2 π2

lx
2

Now that we know the possible un(x) and λn, we put those into the v equation which is

d2 v
d y2 = λ v

and which has the solutions

v(y) = c+ e λn y + c- e- λn y

If this solution is to be zero at ly, we must have

0 = c+ e λn ly + c- e- λn ly

If the full solution is to be sin 3 π x
lx

 at y = 0 that tells us we must have the solutions with u3(x) and λ3 and

that

1 = c+ + c-

So

0 = c+ e λn ly + (1- c+) e- λn ly = c+e λn ly - e- λn ly + e- λn ly

So

c+ =
-e- λn ly

e λn ly-e- λn ly

and

c- = 1- c+ = 1- -e- λn ly

e λn ly-e- λn ly
= e λn ly

e λn ly-e- λn ly

So

v(y) = c+ e λn y + c- e- λn y = -e- λn ly

e λn ly-e- λn ly
e λn y + e λn ly

e λn ly-e- λn ly
e- λn y

Stick in from what we learned solving the u(x) equation, that we must λ3
2 = 3 π

lx
, and we then have

v(y) = -e
-

3 π

lx
ly

e
3 π

lx
ly-e

-
3 π

lx
ly

e
3π
lx

ly y + e
3 π

lx
ly

e
3 π

lx
ly-e

-
3 π

lx
ly

e-
3π
lx

ly y =
sinh 3π

lx
ly-y

sinh 3π
lx

ly

In the very last step, I used that these particular combinations of exponentials are called sinh (pro-
nounced “cinch” as in “cinching a knot”), and they have companion combinations called cosh (pro-
nounced “kosh”) that we did not need.

So

T(x, y) = u(x) v(y) = sin 3π x
lx

sinh 3π
lx

ly-y

sinh 3π
lx

ly

4 21-DiffusionInTwoDimensions-SteadyState.nb

We guess that T(x, y) = u(x) v(y).

Upon putting this guess into the differential equations, we discover that if this trick is to work, then u(x)
must satisfy the ordinary differential equation:

d2 u
d x2 = -λ u

and the solutions that have u(0) = 0 and u(lx) = 0 are

un(x) = sin nπ x
lx

, with n = 1, 2, 3, ...

and λn =
n2 π2

lx
2

Now that we know the possible un(x) and λn, we put those into the v equation which is

d2 v
d y2 = λ v

and which has the solutions

v(y) = c+ e λn y + c- e- λn y

If this solution is to be zero at ly, we must have

0 = c+ e λn ly + c- e- λn ly

If the full solution is to be sin 3 π x
lx

 at y = 0 that tells us we must have the solutions with u3(x) and λ3 and

that

1 = c+ + c-

So

0 = c+ e λn ly + (1- c+) e- λn ly = c+e λn ly - e- λn ly + e- λn ly

So

c+ =
-e- λn ly

e λn ly-e- λn ly

and

c- = 1- c+ = 1- -e- λn ly

e λn ly-e- λn ly
= e λn ly

e λn ly-e- λn ly

So

v(y) = c+ e λn y + c- e- λn y = -e- λn ly

e λn ly-e- λn ly
e λn y + e λn ly

e λn ly-e- λn ly
e- λn y

Stick in from what we learned solving the u(x) equation, that we must λ3
2 = 3 π

lx
, and we then have

v(y) = -e
-

3 π

lx
ly

e
3 π

lx
ly-e

-
3 π

lx
ly

e
3π
lx

ly y + e
3 π

lx
ly

e
3 π

lx
ly-e

-
3 π

lx
ly

e-
3π
lx

ly y =
sinh 3π

lx
ly-y

sinh 3π
lx

ly

In the very last step, I used that these particular combinations of exponentials are called sinh (pro-
nounced “cinch” as in “cinching a knot”), and they have companion combinations called cosh (pro-
nounced “kosh”) that we did not need.

So

T(x, y) = u(x) v(y) = sin 3π x
lx

sinh 3π
lx

ly-y

sinh 3π
lx

ly

Graphing the Solution
In[106]:=

exactSolution[x_, y_] := Sin
3 Pi

lengthX
x

Sinh 3 Pi
lengthX

(lengthY - y)

Sinh 3 Pi
lengthX

lengthY

In[107]:=

Plot3D[exactSolution[x, y], {x, 0, lengthX}, {y, 0, lengthY},
PlotRange → {{0, lengthX}, {0, lengthY}, {-1.5, 1}}, PlotPoints → 60,
MaxRecursion → 6, ColorFunction → Function[{x, y, z}, Hue[z]], BoxRatios → {1, 1, 1}]

Out[107]=

We have reproduced what we set out to reproduce (but see the Epilogue
below):

21-DiffusionInTwoDimensions-SteadyState.nb 5

We have reproduced what we set out to reproduce (but see the Epilogue
below):

It is good to have shading of a 2-D plot (rather than 3-D) plots in your arsenal of output techniques:
In[108]:=

ContourPlot[exactSolution[x, y], {x, 0, lengthX}, {y, 0, lengthY},
PlotRange → {Automatic, Automatic, {-1, 1}}, PlotLegends → Automatic]

Out[108]=

In[109]:=

Epilogue
I had no intention when I originally planned this particular notebook in our steady progression of ever-
more-complicated notebooks to show you so much math. I wanted Mathematica to do the work! I only
did the separation of variables trick above because I couldn’t get Mathematica to give me the right
answer. This was due to a boo-boo in the code below, which is now fixed (thanks to the scrutiny and
correction I got on stackexchange).

That said, there will be some value, when we get to the notebooks for the final two Fridays of the
course on quantum mechanics, that you have already had some exposure to the separation of vari-
ables trick.

Before we do that, I am going to do one more diffusion notebook, using a completely different tech-
nique. I will do it in three dimensions, and instead of heat, it will be a simple model of diffusion of
pollution downwind of a smokestack.

6 21-DiffusionInTwoDimensions-SteadyState.nb

I had no intention when I originally planned this particular notebook in our steady progression of ever-
more-complicated notebooks to show you so much math. I wanted Mathematica to do the work! I only
did the separation of variables trick above because I couldn’t get Mathematica to give me the right
answer. This was due to a boo-boo in the code below, which is now fixed (thanks to the scrutiny and
correction I got on stackexchange).

That said, there will be some value, when we get to the notebooks for the final two Fridays of the
course on quantum mechanics, that you have already had some exposure to the separation of vari-
ables trick.

Before we do that, I am going to do one more diffusion notebook, using a completely different tech-
nique. I will do it in three dimensions, and instead of heat, it will be a simple model of diffusion of
pollution downwind of a smokestack.

Making Mathematica Numerically Solve the Problem
In[110]:=

twoDimensionalDiffusionSolutionRule =

NDSolve[twoDimensionalDiffusionProblem, temp, {x, 0, lengthX}, {y, 0, lengthY}]〚1〛
Out[110]=

temp → InterpolatingFunction Domain: {{0., 100.}, {0., 60.}}
Output: scalar 

Convert the rule to a function:
In[111]:=

(* The boo-boo, which is now fixed, was on the next line. *)

twoDimensionalDiffusionSolution[x_, y_] =

temp[x, y] /. twoDimensionalDiffusionSolutionRule
Out[111]=

InterpolatingFunction Domain: {{0., 100.}, {0., 60.}}
Output: scalar [x, y]

21-DiffusionInTwoDimensions-SteadyState.nb 7

Plotting the Numerical Solution
In[112]:=

Plot3D[twoDimensionalDiffusionSolution[x, y], {x, 0, lengthX}, {y, 0, lengthY},
PlotRange → {{0, lengthX}, {0, lengthY}, {-1.5, 1}}, PlotPoints → 60,
MaxRecursion → 6, ColorFunction → Function[{x, y, z}, Hue[z]], BoxRatios → {1, 1, 1}]

Out[112]=

8 21-DiffusionInTwoDimensions-SteadyState.nb

21-DiffusionInTwoDimensions-SteadyState.nb 9

