
Schrodinger Equation
Interpretation and Time-Dependence

This is our twenty-fourth notebook. In this notebook, we will build on the intuition for the solutions 
found in the previous notebook. We will interpret and “normalize” the solutions. These are known as 
stationary solutions. Then we will reintroduce time, see that energy closely relates to time-depen-
dence, and finally combine solutions with different energies and different time-dependencies to get 
non-stationary (moving) solutions of Schrodinger’s equation.

Exact Energy Levels

One of the things that comes out of an exact solution is the exact energy levels. They are:

En = ℏωn+ 1
2


First we should compare that with the values we got by fiddling with energy in the previous notebook.

In [ ] := energy[n_] := n +
1

2

Allowing for “experimental” error, did you get something close to 1
2

, 3
2

, 5
2

, 7
2

, and 9
2

?

Exact Solutions (Wave Functions)

The other thing that comes out of an exact solution is the exact wave functions, but rather than 
attempt to give you some kind of general formula for ψn(x) that is valid for all n, I’ll just define the first 
five (with n = 0, 1, 2, 3, and 4):

In [ ] := psi[x_, 0] :=
1

Pi1/4
Exp-x2  2;

psi[x_, 1] :=
1

Pi1/4
2 x Exp-x2  2;

psi[x_, 2] :=
1

Pi1/4
1

2
2 x2 - 1 Exp-x2  2;

psi[x_, 3] :=
1

Pi1/4
1

3
2 x3 - 3 x Exp-x2  2;

psi[x_, 4] :=
1

Pi1/4
1

384
16 x4 - 48 x2 + 12 Exp-x2  2;



Let’s plot those first five exact solutions:

In [ ] := Table[Plot[psi[x, n], {x, -3, 4}, PlotLabel → n], {n, 0, 4}] // Column
Out[ ]=
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Again you could compare with your sketches from the previous notebook.
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Exact Solutions — Observables

The next intellectual leap that the quantum physicists of the 1920s made is that the wave function is 
itself unobservable! Furthermore they allowed the value of the wave function at each point x (or at 
each point x at each time t) to be a complex number!! Complex numbers are numbers that can have 
both real and imaginary parts. It’s almost like these guys were tripping. I cannot fathom how they came 
up with such crazy stuff. So what is observable!?

If you square the wave function (thereby losing some information), what comes out of that operation is 
the thing that is observable. Let’s plot the squared wave functions:

In [ ] := TablePlotAbs[psi[x, n]]2, {x, -3, 4}, {n, 0, 4} // Column
Out[ ]=
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Exact Solutions — Normalization

The squared wave function, which is observable, is interpreted as the probability of finding the particle 
at the point in question. The “squaring” I am talking about always yields a real number. In Mathematica 
we use Abs[] and then square the result, because Abs[] has been arranged to do the right thing with 
complex numbers.

The wave functions I squared above were already real (not complex), so I could have used ordinary 
squaring, but let’s already start getting in the habit of using the kind of squaring you have to use when 
complex numbers appear. 

Because the interpretation of the square of the wave function is that it is the probability for finding the 
particle at a position, and the probability of finding the electron somewhere must be one, then the sum 
of the probability of finding it any specific place must add up to 1. You can eyeball the curves above and 
perhaps satisfy yourself that they each have area under the curve 1, or you can make Mathematica 
compute the area under each of the curves:

In [ ] := TableIntegrateAbs[psi[x, n]]2, {x, -Infinity, Infinity}, {n, 0, 4}
Out[ ]=

{1, 1, 1, 1, 1}

Now you finally know why ψ ' (-longWays) = 0.1 was arbitrary. We were just going to multiply by a 
constant so that the total probability came out to 1. That is precisely the reason for all the messy 
constants like 1

Pi1/4
1
384

 that showed up out in front of the exact wave functions. These are called 

“normalized” wave functions.

Quantum Superpositions (aka Mixtures)

Like waves on a guitar string, quantum mechanics allows any superposition of wave functions to be a 
wave function. Let’s consider an arbitrary superposition of the first five wave functions. The most 
general superposition, now including the time dependence looks like this:

In [ ] := timeDependentPsi[x_, t_] :=
Expand[Sum[c[n] × psi[x, n] Exp[-Sqrt[-1] energy[n] t], {n, 0, 4}]]

timeDependentProbabability[x_, t_] := Abs[timeDependentPsi[x, t]]2

timeDependentProbabability[x, t] // TraditionalForm
Out[ ] //Tradit ionalForm=
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Animating Time Dependence

So that the total probability in the superposition of finding the electron somewhere is still 1, we must 
have:

Abs[c[0]]2 +Abs[c[1]]2 +Abs[c[2]]2 +Abs[c[3]]2 +Abs[c[4]]2 = 1

A Trivial Cross-Check

If we take a pure state, one that only has c[2]=1 for example, and all the rest 0, we should get back a 
stationary probability density function. Let’s do that case:

In [ ] := Animate[Plot[
timeDependentProbabability[x, t] /. {c[0] → 0, c[1] → 0, c[2] → 1, c[3] → 0, c[4] → 0},
{x, -4, 4}, PlotRange → {All, {0, 1}}], {t, 0, 2 Pi}]

Out[ ]=
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Recovering Time-Dependence

So now, as our final manipulation of the one-dimensional harmonic oscillator solutions, we will recover 
time-dependence by considering a superposition (a mixture) of states with different energies?

What solution of Abs[c[0]]2 +Abs[c[1]]2 +Abs[c[2]]2 +Abs[c[3]]2 +Abs[c[4]]2 = 1 can you come up with that 
has c[2]=c[3]=c[4]=0 and c[1]=c[2]?

Copy-and-paste the essential part out of the Animate[] above,  paste it into the animate below, and 
make the necessary changes to the constants c[]:

In [ ] := Animate[Graphics[Disk[]], {t, 0, 2 Pi}]
Out[ ]=

t
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