
Position from Velocity — Constant Acceleration
Done in class, January 21, 2025

I was going to give you guys a finished notebook, and indeed I have a finished notebook that does a
fancy job of what you are about to do below, but I decided that it is much better for you to produce
the core code.

The Constant Acceleration Worksheet

In the last class, we manually applied the theory to one-dimensional motion with constant accelera-
tion.

We used the midpoint approximation, we chose Δt = 0.4, we chose v(t) = 6 · t, and we iterated from
tinitial = 0.0 to tfinal = 6.0 by applying these formulas 15 times:

ti+1 = ti +Δt

x(ti+1) ≈ x(ti) + vti +
Δt
2
 ·Δt

The index i in our example ranged from 0 to 15 with t0 = tinitial and t15 = tfinal. This gave us 15 times
steps and 16 points (counting both the initial and final ones).

Here is a function and some variables that capture everything about the specific problem we are
trying to solve.

In[37]:= v[t_] := 6 t
steps = 15;
tInitial = 0.0;
tFinal = 6.0;
deltaT = (tFinal - tInitial) / steps;

An Inelegant Solution

The following works, but it is lousy programming (the kind of inelegant, inefficient programming most
people do most of the time). I put it here so that you know what final result you are trying to get to.

Don’t even bother reading this lousy code:

In[42]:= times = Range[tInitial, tFinal, deltaT];
midpointTimes = Drop[times, -1] + 0.2;
(* drop the last element which would be 6.2 *)

midpointVelocities = 6 midpointTimes; (* our velocity function is just 6 t *)

displacements = midpointVelocities deltaT;
(* the product of velocity and deltaT gives displacement *)

positions = Accumulate[displacements];
(* it happens that Mathematica has a function that does most of what we need *)

positions = Prepend[positions, 0.0];
(* Accumulate didn't include the initial position of 0.0,
so we need to explicitly prepend it *)

orderedPairs = Transpose[{times, positions}];
(* we have a list of times and a list of positions,
but we need ordered pairs to feed to ListPlot,
so we have to transpose the two lists *)

If you compare the following plot with the plot you made in the last class’s worksheet, you’ll see that
at least the lousy code has the merit of getting the right answer.

In[49]:= ListPlot[orderedPairs]
Out[49]=

1 2 3 4 5 6

20

40

60

80

100

2 PositionFromVelocity-ConstantAcceleration.nb

The Form of an Elegant Solution

I want you to do a much more elegant solution that uses the ideas I showed you in the Heads or Tails
notebook. Specifically, I want you define a function that takes the current time and the current posi-
tion, and then uses the theory to compute the next time and the next position. Then I want you to use
NestList to get all 15 subsequent positions. You’ll be building out something like this:

In[50]:= procedure[t_] := t + deltaT
results = NestList[procedure, 0, 15]

Out[51]=

{0, 0.4, 0.8, 1.2, 1.6, 2., 2.4, 2.8, 3.2, 3.6, 4., 4.4, 4.8, 5.2, 5.6, 6.}

Perhaps we should quickly recall what Nest and NestList do. NestList[procedure, 0, 3]
is a compact way of writing procedure[procedure[procedure[0]]. NestList is pretty
much the same thing, but it returns all the intermediate results instead of just the final result.

In[52]:= ListPlot[results]
Out[52]=

5 10 15

1

2

3

4

5

6

This is going to be trickier than it looks, because the function procedure that we just defined takes
one argument and returns one value and that is the only kind of function that NestList can handle.
How on Earth are you going to supply both ti and xi to procedure? How on Earth are you going to
return ti+1 and xi+1 from procedure?

PositionFromVelocity-ConstantAcceleration.nb 3

https://brianhill.github.io/oscillations-and-waves/demonstrations/HeadsOrTails.nb.pdf
https://brianhill.github.io/oscillations-and-waves/demonstrations/HeadsOrTails.nb.pdf

Your Elegant Solution Goes Here

The rain in Spain falls mainly on the plane (while you are sitting on the tarmac, waiting to fly home).

In[53]:= (* You already have the following definitions at your
disposal from earlier in the notebook. I'll just put them
here in comments so what was already defined is handy. *)

(*

v[t_]:=6t;
steps = 15;
tInitial=0.0;
tFinal=6.0;
deltaT=(tFinal-tInitial)/steps;
*)

(* The code that needs modifying follows. *)

(*

procedure[t_]:=t+deltaT;
results=NestList[procedure,0,15]
*)

4 PositionFromVelocity-ConstantAcceleration.nb

