
Second-Order Runge-Kutta — Mass on a Spring
Done in class, January 29, 2025

This is a third notebook for you to finish in-class. First let’s recap and improve the last notebook which 
had a sinusoidal acceleration hard-coded into it.

Sinusoidal Acceleration Notebook — Recap

Problem Description

Our final version of the sinusoidal acceleration problem had F = -10 sin 2 t and m = 5. With tinitial = 0.0 
and tfinal = 3π , we had three full periods of the sine function, and we had 72 time steps:

In [ ] := force[t_] := -10 Sin[2 t]
m = 5;
a[t_] := force[t] / m;
tInitial = 0.0;
tFinal = 3 Pi;
steps = 72;
deltaT = (tFinal - tInitial) / steps;

Initial Conditions

We chose xinitial = 0 and vinitial = 1.0.

In [ ] := xInitial = 0.0;
vInitial = 1.0;
aInitial = 0.0;
initialConditions = {tInitial, xInitial, vInitial, aInitial};

Update Procedure — Theory

For the sinusoidal acceleration notebook, the theory we implemented updated all three of time, 
position, and velocity as follows:

ti+1 = ti +Δt

v(ti+1) = v(ti) + ati +
Δt
2
 ·Δt

x(ti+1) = x(ti) + (v(ti) + v(ti+1)) ·
Δt
2



Update Procedure — Implementation

Below is an implementation of that is a bit better than the one we did in class. I added some parenthe-
sis and within those parenthesis I am able to define variables before returning a result. This makes the 
implementation more readable.

In [ ] := procedure[cc_] := (

(* Extract time, position, and velocity from the list. *)

curTime = cc〚1〛;
curPosition = cc〚2〛;
curVelocity = cc〚3〛;
(* Implement the three equations in the theory above. *)

newTime = curTime + deltaT;
newVelocity = curVelocity + a[curTime + deltaT/ 2] deltaT;
newPosition = curPosition + (curVelocity + newVelocity) deltaT / 2;
(* We don't need newAcceleration for the procedure,
but it is nice to show acceleration as a plot too,
so tabulate it too. *)

newAcceleration = a[newTime];
{newTime, newPosition, newVelocity, newAcceleration}

)

I hope you agree that it has become much clearer what each line of procedure does, and also made it 
less likely that we will have typos in extracting the time, the position, and the velocity from the list.

Plotting the Sinusoidal Acceleration Results

We nested the procedure 72 times:

In [ ] := results = NestList[procedure, initialConditions, steps];

We transposed the results to make it easier to take parts of them:

In [ ] := resultsTransposed = Transpose[results];

Then we plotted them.

In [ ] := accelerationPlot = ListLinePlot[Transpose[resultsTransposed〚{1, 4}〛]];
velocityPlot = ListLinePlot[Transpose[resultsTransposed〚{1, 3}〛]];
positionPlot = ListLinePlot[Transpose[resultsTransposed〚{1, 2}〛]];

Usually we display those as a column sot that the time axes line up vertically, but to save space, I’ll 
display them as a row:

In [ ] := Row[{accelerationPlot, velocityPlot, positionPlot}]
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Mass on a Spring

Everything up to this point in this notebook was review (with a few mild improvements) of stuff we did 
in the last class. Finally we get to the new stuff.

Problem Description

In [ ] := springForce[x_] := -20 x (* notice how incredibly different this is! *)

mass = 5;
a[x_] := springForce[x] / mass;
tInitial = 0;
tFinal = 3 Pi;
steps = 72;
deltaT = (tFinal - tInitial) / steps;

Initial Conditions

Let’s stretch this spring to xinitial = 25 and let it go with no initial velocity, so vinitial = 0.0.

In [ ] := xInitial = 25.0;
vInitial = 0.0;
aInitial = a[xInitial];
initialConditions = {tInitial, xInitial, vInitial, aInitial};

Second-Order Runge-Kutta — Theory — Summary

Because the force now depends on the position instead of the time, we had to revisit our procedure, 
and the procedure we ended up with is an example of Second-Order Runge-Kutta (maybe we will 
contemplate all the other Second-Order Runge-Kutta possibilities if implementing this one goes 
quickly):

ti+1 = ti +Δt

x*(ti+1) = x(ti) + v(ti) Δt

v(ti+1) = v(ti) + (a(x(ti)) + a(x*(ti+1))) ·
Δt
2

x(ti+1) = x(ti) + (v(ti) + v(ti+1)) ·
Δt
2

The above four equations are a self-contained summary of what you are about to implement.
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Second-Order Runge-Kutta — Implementation

In [ ] := rungeKutta2[cc_] := (

(* Extract time, position, and velocity from the list. *)

curTime = cc〚1〛;
(* Implement the four equations in the theory above. *)

(* So we can display it easily, tabulate acceleration too. *)

newAcceleration = a[newPosition];
{newTime, newPosition, newVelocity, newAcceleration}

)

Displaying the Mass on a Spring Results

Nest the procedure 72 times and then transpose the results and produce three plots:

In [ ] := rk2Results = NestList[rungeKutta2, initialConditions, steps];
rk2ResultsTransposed = Transpose[rk2Results];
accelerationPlot = ListPlot[Transpose[rk2ResultsTransposed〚{1, 4}〛]];
velocityPlot = ListPlot[Transpose[rk2ResultsTransposed〚{1, 3}〛]];
positionPlot = ListPlot[Transpose[rk2ResultsTransposed〚{1, 2}〛]];
Column[{accelerationPlot, velocityPlot, positionPlot}]

Conclusion / Commentary

The plots above look mighty similar to the plots we got last time, but now we are getting our results 
completely differently! Our idealized spring just obeys F(x) = -20 x. Nowhere did we put sines or 
cosines into the problem! Oscillation emerged naturally.

It happens that the position and acceleration are following a cosine function, and the velocity is follow-
ing a sine function. With different initial conditions you can switch these or make any mixture. Here is a 
video showing the bizarre fact that a mass on a spring has some resemblance to a particle moving in a 
circle: https://youtu.be/ZlleypTKfGY. I happen to know, using calculus, that the exact solution for the 
mass on a spring with the initial conditions that we chose is:

a(t) = -100 cos 2 t
v(t) = -50 sin 2 t
x(t) = 25 cos 2 t

You can see by studying the graphs that Mathematica has done a darned good job of using Second-
Order Runge-Kutte — which to be sure is an approximate method — to get close to the exact solution, 
and if you changed the number of steps to 720, or 7200, Mathematica would get even closer to the 
exact solution.

Soon we will be using Mathematica to solve problems that cannot be solved exactly using calculus!
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