
Velocity from Acceleration — Sinusoidal Force
Done in class, January 24, 2025

This is a second notebook for you to finish in-class. I have tried to gather the essentials of all the
numerical analysis you have done so far into this one place, so you don’t have to jump around open-
ing other documents.

Position From Velocity — Theory — Recap

Using the midpoint approximation, the position from velocity procedure boiled down to:

ti+1 = ti +Δt

x(ti+1) ≈ x(ti) + vti +
Δt
2
 ·Δt

Constant Acceleration — Problem Description — Recap

In the last class, you created a pleasantly compact and elegant implementation of the solution to this
problem: with Δt = 0.4, v(t) = 6 · t, tinitial = 0.0, and tfinal = 6.0 we wanted to apply the above formulas 15
times. The code that described this specific problem looked like (note that I styled this to look like a
Mathematica cell, but it is actually just text):

v[t_] := 6t
steps = 15;
tInitial = 0.0;
tFinal = 6.0;
deltaT = (tFinal - tInitial)/steps;

 Constant Acceleration — Implementation — Recap

Because NestList only takes functions that have one argument, we needed to hide two variables
(time and velocity) in a list. Using that idea, a reasonably elegant solution to this problem was simply
(again, I styled this to look like a Mathematica cell, but it is actually just text):

procedure[timeAndPosition_] := {
 timeAndPosition[[1]] + deltaT,
 timeAndPosition[[2]] + v[timeAndPosition[[1]] + deltaT/2]deltaT
}
results = NestList[procedure, {0.0, 0.0}, steps];

The list plot of results looked like:

Because NestList only takes functions that have one argument, we needed to hide two variables
(time and velocity) in a list. Using that idea, a reasonably elegant solution to this problem was simply
(again, I styled this to look like a Mathematica cell, but it is actually just text):

procedure[timeAndPosition_] := {
 timeAndPosition[[1]] + deltaT,
 timeAndPosition[[2]] + v[timeAndPosition[[1]] + deltaT/2]deltaT
}
results = NestList[procedure, {0.0, 0.0}, steps];

The list plot of results looked like:

Sinusoidal Acceleration — Problem Description

Let’s do sinusoidal acceleration with F = -10 sin t and m = 5. Let’s do 1 1/2 periods of the sine function,
with tinitial = 0.0 and tfinal = 3π . Let’s do 72 steps in the 1 1/2 periods.

In [] := force[t_] := -10 Sin[t]
m = 5;
a[t_] := force[t] / m;
tInitial = 0.0;
tFinal = 3 Pi;
steps = 72;
deltaT = (tFinal - tInitial) / steps;

We have to choose the initial x and v at t = 0. I’ll choose xinitial = 0 and vinitial = 2.0.

In [] := xInitial = 0.0;
vInitial = 2.0;
initialConditions = {tInitial, xInitial, vInitial};

You see how I have hidden three variables in a list, using the same strategy as we used for hiding two
variables in a list in the last notebook?

Velocity From Acceleration — Theory — Summary

The theory you will implement updates all three of time, position, and velocity:

ti+1 = ti +Δt

x(ti+1) ≈ x(ti) +
v(ti)+v(ti+1)

2
·Δt

v(ti+1) ≈ v(ti) + ati +
Δt
2
 ·Δt

We are using midpoint in the velocity-from-acceleration formula and we are using trapezoid in the
position-from-velocity formula. Since v(ti+1) is calculated in the last equation and used in the middle
equation, we could rewrite the middle equation using the last equation:

x(ti+1) ≈ x(ti) +
v(ti)+v(ti+1)

2
·Δt = x(ti) +

2 v(ti)+ati+
Δt
2
·Δt

2
·Δt = x(ti) + v(ti) +

ati+
Δt
2
·Δt

2
·Δt

2 VelocityFromAcceleration-SinusoidalForce.nb

The theory you will implement updates all three of time, position, and velocity:

ti+1 = ti +Δt

x(ti+1) ≈ x(ti) +
v(ti)+v(ti+1)

2
·Δt

v(ti+1) ≈ v(ti) + ati +
Δt
2
 ·Δt

We are using midpoint in the velocity-from-acceleration formula and we are using trapezoid in the
position-from-velocity formula. Since v(ti+1) is calculated in the last equation and used in the middle
equation, we could rewrite the middle equation using the last equation:

x(ti+1) ≈ x(ti) +
v(ti)+v(ti+1)

2
·Δt = x(ti) +

2 v(ti)+ati+
Δt
2
·Δt

2
·Δt = x(ti) + v(ti) +

ati+
Δt
2
·Δt

2
·Δt

Sinusoidal Acceleration — Your Implementation

Everything you need is now summarized above. What remains is to implement the core of the note-
book, which is the procedure that will be applied to the initial conditions 72 times. Here is a dummy
placeholder for the procedure:

In [] := procedure[cc_] := {

cat,
dog,
rabbit

}

lotsaConditions = NestList[procedure, initialConditions, steps];

Once you get a proper version of procedure defined, the output of NestList will need a little
massaging in order to get it into a form that ListPlot will accept, and a few more lines are going to
be needed in your notebook do that and make plots of velocity and plots of position. In fact, it might
be nice to make a column of three plots: position, velocity, and acceleration.

VelocityFromAcceleration-SinusoidalForce.nb 3

