
Quantum Physics, Preparation for Tuesday, Mar. 12

In Moore, Finish Q9 and Start Q10
Study Moore through p. 154. You should have deja vu while reading g p. 154, because you did it as 
Problem 2(d) on the Feb. 20th exam. This would be a great time to re-do Problem 2 if you missed any 
part of it, or even if you didn’t miss anything. What you did in Problem 2 is central to everything else 
we will do with wave functions.

For Problem Set 10
In the last problem set, you did Q9M.5 on p. 148. Eq. Q9.21 was:

∫-∞
∞ e-x2a2

d x = a π

Another utterly equivalent way of writing Q9.21 is:

∫-∞
∞ e-x22 b d x = 2πb

and that is the way I usually try to memorize it because most closely corresponds to a neat trick for 
deriving the integral. If you guys ask me, I will show you the trick. Or you can just take it on faith.

Yet another way of writing the integral is:

∫-∞
∞ e-cx2

d x = π /c

1. In the above, c is a constant, and x is the dummy variable of integration. However, the formula is 
valid for any c, so you can think of it as a variable too.

(a) Thinking of c as a variable and taking ∂
∂c

of both sides of the above equation, what new integral do 

you have the answer for?

(b) Here is an easy integral to do:

∫-∞
∞ xe-cx2

d x

What is it?

2. Thanks to Problem 1, you now know the integrals for 

∫-∞
∞ xn e-cx2

d x

with n = 0, 1, and 2. You can of course put in c = 1a2 and then you know the integrals for

∫-∞
∞ xn e-x2a2

d x

with n = 0, 1, and 2.

(a) Normalize the wave function ψ(x) = Ne-x22 a2
. In other words, find N. Do not forget to begin by 

squaring ψ(x). Normalization is always done with the probability, not the probability amplitude. I put 
in the 2 for your convenience. When you square, it goes away.

(b) Using the normalized wave function, calculate

∫-∞
∞ xψ(x)2 d x

This is the “expectation value” of x. It is, on average, what the electron’s x-coordinate is. The notation 
for the average x-coordinate is x.

(c) Again using the normalized wave function, calculate

∫-∞
∞ x2 ψ(x)2 d x

This is the expectation value, or the average measurement of x2. The notation for the average measure-

ment of x2 is x2.

NOTE: x2 and x2 are completely different, right?

(d) Whatever you got for (c), take the square root.

NOTE: You now know x2 . This slightly whacko combination is known to statisticians as the “stan-
dard deviation” of x, and statisticians generally denote it as σ, but we aren’t statisticians.
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3. Let’s do some more integrals. This would be a good time to review changes of variables and integra-
tion by parts, if you don’t remember how those techniques are used to do integrals.

(a) Using the same N as you previously had, what is

∫-∞
∞ N2e-x-x0

2a2
d x

HINT AND DOUBLE-CHECK: There is a simple change of variables that reduces this to an integral you 
already calculated. The result is super-simple! Perhaps it is obvious why.

(b) What is

x = ∫-∞
∞ x N2 e-(x-x0)2a2

d x

HINT: The same simple change of variables applies, but this time, the result is not quite so simple.

(c) What is:

x2 = ∫-∞
∞ x2 N2 e-(x-x0)2a2

d x

4. The momentum operator is ℏ
i

∂
∂x

.

(a) Calculate

∫-∞
∞ N2 e-(x-x0)22 a2 ℏ

i
∂
∂x

e-(x-x0)22 a2
d x

This is denoted p.

(b) The momentum operator squared is -ℏ2 ∂2

∂x2 . Calculate

-ℏ2 ∫-∞
∞ N2 e-(x-x0)22 a2 ∂2

∂x2 e-(x-x0)22 a2
d x = ℏ2 ∫-∞

∞ N2  ∂
∂x

e-(x-x0)22 a2
  ∂

∂x
e-(x-x0)22 a2

 d x

This is denoted p2. I used integration by parts to get the second form of the integral, because it makes 
the algebra a tad easier.
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5. In this problem you will derive a version of the Heisenberg Uncertainty Principle. You’ll do the 
special case with x0 = 0.

(a) Take your answer for 3(c) with x0 = 0. In the special case that x = 0, which is the case you are dealing 

with now, x2  gets its own symbol. It is Δ x. What is Δ x?

NOTE: Now you know part of what goes into Eq. Q9.17.

(b) Take your answer to 4(b). In the special case that p = 0, which is the case you are dealing with right 

now, p2  also gets its own symbol. It is Δ p. What is Δ p?

(c) Well, you have  Δ x and Δ p. What is Δ x ·Δ p?

NOTE: Compare with Eq. 9.17. Note that the Heisenberg Uncertainty Principle has an inequality in it. 
The function you used, a Gaussian, is the best that can be done. For any other function, Δ x ·Δ p is 
larger.

FINAL NOTE: I will introduce a non-zero p0 and allow x0 to be non-zero as well, and derive the slightly 
more general version of the result that you just got in class on Tuesday, but I have to define and 
discuss Δ x and Δ p for the more general case first.
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