
Quantum Physics, Preparation for Friday, Mar. 22

Study Q11.6 and Q12.1 to Q12.3
You’re finishing Q11 and starting Q12, but we are not going to dive into the numerical approaches in 
Q12.4 and Q12.5.

In Q11.6, the fermion gas ideas that you learned about in Rebecca’s presentation will be applied to 
conductors and semiconductors.

In Q12.1 to Q12.3, Moore introduces Schrodinger’s equation, but then in Q12.4, the first thing he says 
is, “we will not attempt to solve Schrodinger’s equation mathematically in this course,” and then he 
launches into numerical methods.

Numerical solutions are great, but actually there are several problems that are within your reach 
mathematically, so after you finish Q12.3, but before you start Q12.4, I am going to introduce you to 
some of these problems. Also, guessing a solution and then showing that it works is a perfectly fine 
way of “solving” Schrodinger’s equation, and a lot of the time, that will be our strategy.

Presentation
Emma: Applying the ideas of Example 11.1 to other molecules (caffeine?!)

For Problem Set 13

Properties of semiconductors

1. Q11B.10 p. 179.

2. Q11B.12 p. 179.

An application of Example 11.1

3. Q11M.11 p. 180, Moore is helping us reason about the oxacarbocyanine family of molecules.

A new type of particle-in-a-box problem

4. We have put quantons in boxes and demanded that they cannot go outside the box. Now we are 
going to start investigating a more realistic case, where it is just very unlikely — but not impossible! — 
for them to be outside the box. Consider the following potential: the potential will be V0 high for 
x > L /2 and x < -L /2. In between the potential is 0. Consider a quanton that is stuck in this box and 
that it has an energy En (or, actually, one of various energies labeled by an integer n), and that En < V0 
but also En > 0. Because of the assumptions in the description above, classically the particle can 
bounce between the walls, but never penetrate them (because it doesn’t have sufficient total energy 
to get into the region where the potential is V0).
(a) Graph the potential. Make a nice graph, because you will be adding to it later.

(b) Classically, we know the particle’s momentum in the region where the potential is 0. Solve En =
pn

2

2m
 

to get pn. Quantum-mechanically, the momentum corresponds to a wavelength. Write down the 
wavelength too.

(c) In the region between -L /2 and L /2 does ψn(x) = ccos pn x
ℏ

 solve Enψ(x) = - ℏ2

2m
d2 ψ
dx2  the Schrodinger 

equation? How about ψn(x) = dsin pn x
ℏ

? How about the linear combination ψn(x) = ccos pn x
ℏ

+ d sin pn x
ℏ

?

NOTE: There is no need to find the constants c and d. That would be txhe job of normalization at some 
later stage of doing a complete solution.

5. In the regions x > L /2 and x < -L /2, the potential is V0 — not 0 — so there we need 

Enψn(x) = - ℏ2

2m
d2 ψn
dx2 + V0ψn(x).

(a) Our function ψ(x) = ccos pn x
ℏ

+ d sin pn x
ℏ

 cannot work in these regions, no matter what (real number) 

we change pn to be. Demonstrate this.
(b) In these new regions try the function ψ(x) = ae-κn x/ℏ + b eκn x/ℏ (the new Greek letter I am using is 
“kappa”). What is the formula for κn in terms of the givens En, V0, and m that makes this work?
(c) In the region x > L /2, the function eκn x/ℏ has a big problem. What is it? Why is e-κn x/ℏ ok in this region?
(d) In the region x < -L /2, the function e-κn x/ℏ has a big problem. What is it? Why is eκn x/ℏ ok in this 
region?

6. Go back to the nice graph you in 4(a) and now we will embellish it.
(a) Knowing what you just discovered in 5(c) add to your graph what the wave function must look like 
in the region x > L /2. Don’t worry about normalization.
(b) Knowing what you learned in 5(d), you also have an idea what the wave function look must look 
like in the region x < -L /2? Although I have said you don’t have to worry about normalization, choose 
the constant multipliers so that the regions of the wave function you have drawn so far is even.
(c) In 4(c) you discovered the linear combinations that work in the region -L /2 < x < L /2. What does 
being an even function demand about this linear combination?
NOTE: You could of course be considering the odd case, but in 6(b), you already went down the path of 
doing the even case, and we are staying on that path.
(d) Given what you learned in 6(c) add to the graph a possibility that can complete the wave function.
NB: Wave functions must be continuous and they cannot even have kinks! The reason is that a second 
derivative of a kink is infinite and p2 2m is represented as a second derivative. There is actually an 

exception to the no-kinks rule, when the potential also is infinite, but in this problem V0  is finite.
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