
Modern Introductory Physics, Part II, Exam 3
Friday, Mar. 29, 2024 — Covering Moore Chapters 10-12.

YOU MAY NEED SOME SEPARATE PAPER TO WORK THE PROBLEMS. AT THE END, PLEASE STAPLE YOUR 
WORK TO THE EXAM AND TURN IT ALL IN.

1. Building a Table of Gaussian Integrals

Let’s repeat and extend some of the things you did on Problem Set 10. First we need to rebuild our 
table of integrals.

(a) Start with ∫-∞
∞ e-cx

2
dx = π /c .  Treating c as the variable, take d

d c
 of each side of this equation and 

simplify to get a formula for  ∫-∞
∞ x2 e-cx

2
d x.

(b) Take another derivative with respect to c and simplify to get a formula for ∫-∞
∞ x4 e-cx

2
d x.

(c) Summarize the results so you can use them in the next problem:

∫-∞
∞ e-cx

2
dx = π /c

 ∫-∞
∞ x2 e-cx

2
d x =

 ∫-∞
∞ x4 e-cx

2
d x =

 
 (d) Summarize the results again, but substituting c = 1b2,

 
 ∫-∞

∞ e-x
2b2

d x =

 ∫-∞
∞ x2 e-x

2b2
d x =

 ∫-∞
∞ x4 e-x

2b2
d x =



2. Normalization and Expectation Values

It can be important in determining whether quantum mechanics predictions are right (it is too much 

to be more specific here), to know things like x4 = ∫-∞
∞ ψ*(x) x4 ψ(x) d x = ∫-∞

∞ x4 ψ(x)2 d x, or as an 

even more important example,  p4 = ∫-∞
∞ ψ*(x)  ℏ

i
d
d x

4 ψ(x) d x . 

(a) For the ground state of the harmonic oscillator, ψ(x) = c0 e-x
22b2

. Use your results from 1(d) to 
normalize ψ(x), e.g., to determine c0 by demanding 1 = ∫-∞

∞ ψ(x)2 d x.

(b) Use your results from 1(d) and 2(a) to determine

x2 = ∫-∞
∞ x2 ψ(x)2 dx

(c) Use your results from 1(d) and 2(a) to determine

x4 = ∫-∞
∞ x4 ψ(x)2 dx

(ASIDE: For those of you who have had or will have statistics, you need x = ∫-∞
∞ x P(x) d x, 

x2 = ∫-∞
∞ x2 P(x) d x, x3 = ∫-∞

∞ x3 P(x) d x, and x4 = ∫-∞
∞ x4 P(x) d x to calculate the mean, variance, skew, 

and kurtosis of a distribution.)
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3. Reflection at a Potential Jump

We are going to learn about reflection at jump in the potential.

(a) Imagine a de Broglie wave coming in from the left (e.g., from negative x) and hitting a barrier at 
x = 0.

ψL(x, t) = ei kL x-i ω t

Using the time-dependent Schrödinger equation, iℏ ∂ψL(x,t)
∂t

= - ℏ2

2m
∂2ψL(x,t)

∂x2 , what is the formula for kL in 

terms of ℏ, ω, and m?

(b) We haven’t normalized ψL(x, t) and we can’t. It represents an infinite stream of particles coming at 
the barrier from the left. There might be a reflected stream too. We can add this to ψL(x, t)  as follows:

ψL(x, t) = ei kL x-i ω t + b e-i kL x-i ω t

What does ψL(x, t) simplify to at x = 0?

(c) Take ∂ψL(x,t)
∂x

.

(d) What does ∂ψL(x,t)
∂x

 simplify to at x = 0?
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4. Transmission at a Potential Jump

This is actually a continuation of Problem 3. If there is a barrier, and it isn’t too high, we expect there 
to be a transmitted wave going to the right.

(a) We can model that as

ψR(x, t) = c ei kR x-i ω t

We’ll have the barrier be V0 high for x > 0, and we’ll assume ℏω > V0.

(ASIDE: We assume ℏω > V0 because that is what “isn’t too high” amounts to. We could alternatively 
assume ℏω < V0, in which case the region x > 0 would be classically forbidden. But that is a different 
problem.)

Using the time-dependent Schrödinger equation, iℏ ∂ψR(x,t)
∂t

= - ℏ2

2m
∂2ψR(x,t)

∂x2 + V0 ψR(x, t), what is the 

formula for kR in terms of ℏ, ω, m and V0?

(b) What does ψR(x, t) simplify to at x = 0?

(c) Take ∂ψR(x,t)
∂x

.

(d) What does ∂ψR(x,t)
∂x

 simplify to at x = 0?

(e) Using your answers for 3(b) and 4(b) what does continuity demand?

(f) Using your answers for 3(d) and 4(d) what does the no-kinks condition demand?

HINT/CROSS-CHECK: If you did the algebra and simplification right, for parts (e) and (f) you will have 
two equations for the two unknowns b and c. The equations will not involve x or t or ω. They just 
involve kL and kR (which in turn depend on all the other constants). If we wanted to continue and learn 
more about transmission and reflection, next we would solve these equations for b and c.
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5. Harmonic Oscillators in Thermal Equilibrium

You got a taste of fermions in thermal equilibrium in the section on semiconductors. In this problem, 
we will work on the simpler situation of a lot of harmonic oscillators in thermal equilibrium.

To make life easier, instead of writing 1
kB T

 a lot, we will define β ≡ 1
kB T

.

The fundamental principle of statistical mechanics is that for a system in thermal equilibrium, the 
probability, Pn, that a system has energy En is proportional to e-β En. We don’t know the proportionality 
constant yet. I will just write it as 1

Z
, so Pn =

1
Z
e-βEn.

(a) For the harmonic oscillator En = ℏωn + 1
2
. What is P1

P0
?

(b) What is Pn+1

Pn
?

(c) To determine Z, it has to be that the sum of all the Pn adds up to 1. so 1 = ∑n=0
∞ 1

Z
e-βEn  or 

Z = ∑n=0
∞ e-βEn. Put in En = ℏωn + 1

2
. Factor out the overall e-

1
2
β ℏ ω. You are close to knowing Z for the 

harmonic oscillator.

(d) Use e-β ℏ ω n = e-β ℏ ωn and ∑n=0
∞ xn = 1

1-x
 to finalize your answer for Z.

(e) Put your answer for Z into Pn =
1
Z
e-βEn  and simplify. When you are done simplifying, you will know 

Pn in terms of the constants β, ℏ, ω, n, and of course e.

Exam3.nb     5



Name ___________________
1.         / 5

2.         / 5

3.         / 5

4.         / 5

5.         / 5

GRAND TOTAL

            / 25
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