Modern Introductory Physics, Part II, Exam 3

Friday, Mar. 29, 2024 - Covering Moore Chapters 10-12.
YOU MAY NEED SOME SEPARATE PAPER TO WORK THE PROBLEMS. AT THE END, PLEASE STAPLE YOUR WORK TO THE EXAM AND TURN IT ALL IN.

1. Building a Table of Gaussian Integrals

Let's repeat and extend some of the things you did on Problem Set 10. First we need to rebuild our table of integrals.
(a) Start with $\int_{-\infty}^{\infty} e^{-c x^{2}} d x=\sqrt{\pi / c}$. Treating c as the variable, take $\frac{d}{d c}$ of each side of this equation and simplify to get a formula for $\int_{-\infty}^{\infty} x^{2} e^{-c x^{2}} d x$.
(b) Take another derivative with respect to c and simplify to get a formula for $\int_{-\infty}^{\infty} x^{4} e^{-c x^{2}} d x$.
(c) Summarize the results so you can use them in the next problem:
$\int_{-\infty}^{\infty} e^{-c x^{2}} d x=\sqrt{\pi / c}$
$\int_{-\infty}^{\infty} x^{2} e^{-c x^{2}} d x=$
$\int_{-\infty}^{\infty} x^{4} e^{-c x^{2}} d x=$
(d) Summarize the results again, but substituting $c=1 / b^{2}$,
$\int_{-\infty}^{\infty} e^{-x^{2} / b^{2}} d x=$
$\int_{-\infty}^{\infty} x^{2} e^{-x^{2} / b^{2}} d x=$
$\int_{-\infty}^{\infty} x^{4} e^{-x^{2} / b^{2}} d x=$

2. Normalization and Expectation Values

It can be important in determining whether quantum mechanics predictions are right (it is too much to be more specific here), to know things like $\overline{x^{4}}=\int_{-\infty}^{\infty} \psi^{*}(x) x^{4} \psi(x) d x=\int_{-\infty}^{\infty} x^{4}|\psi(x)|^{2} d x$, or as an even more important example, $\overline{p^{4}}=\int_{-\infty}^{\infty} \psi^{: *}(x)\left(\frac{\hbar}{i} \frac{d}{d x}\right)^{4} \psi(x) d x$.
(a) For the ground state of the harmonic oscillator, $\psi(x)=c_{0} e^{-x^{2} / 2 b^{2}}$. Use your results from 1 (d) to normalize $\psi(x)$, e.g., to determine c_{0} by demanding $1=\int_{-\infty}^{\infty}|\psi(x)|^{2} d x$.
(b) Use your results from 1(d) and 2(a) to determine
$\overline{x^{2}}=\int_{-\infty}^{\infty} x^{2}|\psi(x)|^{2} d x$
(c) Use your results from 1(d) and 2(a) to determine
$\overline{x^{4}}=\int_{-\infty}^{\infty} x^{4}|\psi(x)|^{2} d x$
(ASIDE: For those of you who have had or will have statistics, you need $\bar{x}=\int_{-\infty}^{\infty} x P(x) d x$, $\overline{x^{2}}=\int_{-\infty}^{\infty} x^{2} P(x) d x, \overline{x^{3}}=\int_{-\infty}^{\infty} x^{3} P(x) d x$, and $\overline{x^{4}}=\int_{-\infty}^{\infty} x^{4} P(x) d x$ to calculate the mean, variance, skew, and kurtosis of a distribution.)

3. Reflection at a Potential Jump

We are going to learn about reflection at jump in the potential.
(a) Imagine a de Broglie wave coming in from the left (e.g., from negative x) and hitting a barrier at $x=0$.
$\psi_{L}(x, t)=e^{i k_{L} x-i \omega t}$
Using the time-dependent Schrödinger equation, i $\hbar \frac{\partial \psi_{L}(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{\nu}(x, t)}{\partial x^{2}}$, what is the formula for k_{L} in terms of \hbar, ω, and m ?
(b) We haven't normalized $\psi_{L}(x, t)$ and we can't. It represents an infinite stream of particles coming at the barrier from the left. There might be a reflected stream too. We can add this to $\psi_{L}(x, t)$ as follows:
$\psi_{L}(x, t)=e^{i k_{L} x-i \omega t}+b e^{-i k_{L} x-i \omega t}$
What does $\psi_{L}(x, t)$ simplify to at $x=0$?
(c) Take $\frac{\partial \psi_{L}(x, t)}{\partial x}$.
(d) What does $\frac{\partial \psi_{L}(x, t)}{\partial x}$ simplify to at $x=0$?

4. Transmission at a Potential Jump

This is actually a continuation of Problem 3. If there is a barrier, and it isn't too high, we expect there to be a transmitted wave going to the right.
(a) We can model that as
$\psi_{R}(x, t)=c e^{i k_{R} x-i \omega t}$

We'll have the barrier be V_{0} high for $x>0$, and we'll assume $\hbar \omega>V_{0}$.
(ASIDE: We assume $\hbar \omega>V_{0}$ because that is what "isn't too high" amounts to. We could alternatively assume $\hbar \omega<V_{0}$, in which case the region $x>0$ would be classically forbidden. But that is a different problem.)

Using the time-dependent Schrödinger equation, $i \hbar \frac{\partial \psi_{R}(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{R}(x, t)}{\partial x^{2}}+V_{0} \psi_{R}(x, t)$, what is the formula for k_{R} in terms of \hbar, ω, m and V_{0} ?
(b) What does $\psi_{R}(x, t)$ simplify to at $x=0$?
(c) Take $\frac{\partial \psi_{R}(x, t)}{\partial x}$.
(d) What does $\frac{\partial \psi_{R}(x, t)}{\partial x}$ simplify to at $x=0$?
(e) Using your answers for 3(b) and 4(b) what does continuity demand?
(f) Using your answers for 3(d) and 4(d) what does the no-kinks condition demand?

HINT/CROSS-CHECK: If you did the algebra and simplification right, for parts (e) and (f) you will have two equations for the two unknowns b and c. The equations will not involve x or t or ω. They just involve k_{L} and k_{R} (which in turn depend on all the other constants). If we wanted to continue and learn more about transmission and reflection, next we would solve these equations for b and c.

5. Harmonic Oscillators in Thermal Equilibrium

You got a taste of fermions in thermal equilibrium in the section on semiconductors. In this problem, we will work on the simpler situation of a lot of harmonic oscillators in thermal equilibrium.

To make life easier, instead of writing $\frac{1}{k_{B} T}$ a lot, we will define $\beta \equiv \frac{1}{k_{B} T}$.

The fundamental principle of statistical mechanics is that for a system in thermal equilibrium, the probability, P_{n}, that a system has energy E_{n} is proportional to $e^{-\beta E_{n}}$. We don't know the proportionality constant yet. I will just write it as $\frac{1}{2}$, so $P_{n}=\frac{1}{Z} e^{-\beta E_{n}}$.
(a) For the harmonic oscillator $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$. What is $\frac{P_{1}}{P_{0}}$?
(b) What is $\frac{P_{n+1}}{P_{n}}$?
(c) To determine Z, it has to be that the sum of all the P_{n} adds up to 1 . so $1=\sum_{n=0}^{\infty} \frac{1}{Z} e^{-\beta E_{n}}$ or $Z=\sum_{n=0}^{\infty} e^{-\beta E_{n}}$. Put in $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$. Factor out the overall $e^{-\frac{1}{2} \beta \hbar \omega}$. You are close to knowing Z for the harmonic oscillator.
(d) Use $e^{-\beta \hbar \omega n}=\left(e^{-\beta \hbar \omega}\right)^{n}$ and $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ to finalize your answer for Z.
(e) Put your answer for Z into $P_{n}=\frac{1}{Z} e^{-\beta E_{n}}$ and simplify. When you are done simplifying, you will know P_{n} in terms of the constants β, \hbar, ω, n, and of course e.

6 | Exam3.nb

Name

1. / 5
2. $/ 5$
3. $/ 5$
4. $/ 5$
5. / 5

GRAND TOTAL
/ 25

